H. F. Rizzo, J. R. Humphrey, and J. R. Kolb, Growth of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). II. Control of growth by use of high T g polymeric binders, Propellants and Explosives, vol.6, p.2736, 1981.

J. L. Maienschein and F. Garcia, Thermal expansion of TATB-based explosives from 300 to 566 K, Thermochimica Acta, vol.384, issue.1-2, 2002.
DOI : 10.1016/S0040-6031(01)00778-X

D. G. Thompson, G. W. Brown, B. Olinger, J. T. Mang, B. Patterson et al., The Effects of TATB Ratchet Growth on PBX 9502, Propellants, Explosives, Pyrotechnics, vol.100, issue.6, pp.507-513, 2010.
DOI : 10.1002/prep.200900067

R. H. Gee, A. Maiti, and L. E. Fried, Mesoscale modeling of irreversible volume growth in powders of anisotropic crystals, Applied Physics Letters, vol.90, issue.25, p.254105, 2007.
DOI : 10.1063/1.2750403

A. Maiti, R. H. Gee, D. M. Homan, and L. E. Fried, Irreversible volume growth in polymer-bonded powder systems: Effects of crystalline anisotropy, particle size distribution, and binder strength, Journal of Applied Physics, vol.103, issue.5, 2008.
DOI : 10.1063/1.2838319

G. Demol, P. Lambert, and H. Trumel, A study of the microstructure of pressed TATB and its evolution after several kinds of insults, p.11, 1998.

C. B. Skidmore, D. S. Phillips, D. J. Idar, and S. F. Son, Characterizing the microstructure of selected high explosives, 1999.

L. Heinrich and E. Schüle, Generation of the typical cell of a non-poissonian Johnson-Mehl tessellation, Communications in Statistics. Stochastic Models, vol.8, issue.3, p.560, 1995.
DOI : 10.1002/mana.19881380122

E. Pineda, P. Bruna, and D. Crespo, Cell size distribution in random tessellations of space, Physical Review E, vol.70, issue.6, 2004.
DOI : 10.1103/PhysRevE.70.066119

D. Jeulin, Random tessellations and Boolean Random Functions Mathematical Morphology and its Applications to Signal and Image Processing, Lecture Notes in Comp. Sc, vol.7883, p.2536, 2013.

C. Lantuéjoul, Sur le modèle de Johnson-Mehl généralisé, 1977.

G. Matheron, Random sets and integral geometry, 1975.

M. Castro, F. Domìnguez-adame, A. Sánchez, and T. Rodríguez, Model for crystallization kinetics: Deviations from Kolmogorov???Johnson???Mehl???Avrami kinetics, Applied Physics Letters, vol.75, issue.15, p.2205, 1999.
DOI : 10.1063/1.124965

J. Ferenc and Z. Néda, On the size distribution of Poisson Voronoi cells, Physica A: Statistical Mechanics and its Applications, vol.385, issue.2, p.518526, 2007.
DOI : 10.1016/j.physa.2007.07.063

J. Farjas and P. Roura, Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization, Physical Review B, vol.78, issue.14, p.14, 2008.
DOI : 10.1103/PhysRevB.78.144101

D. Jeulin, Morphologie mathématique et propriétés physiques des agglomérés de minerais de fer et du coke métallurgique, Thése de Docteur-Ingénieur en Sciences et Techniques Miniéres, 1979.

H. H. Cady and A. C. Larson, The crystal structure of 1, pp.5-26, 1965.

D. Bedrov, O. Borodin, G. D. Smith, T. D. Sewell, D. M. Dattelbaum et al., A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature, The Journal of Chemical Physics, vol.131, issue.22, pp.2247035-2247061, 1979.
DOI : 10.1063/1.3264972

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and non linear mechanical properties of the composites, C.R. Acad, 1994.

D. Eyre and G. Milton, A fast numerical scheme for computing the response of composites using grid renement, Eur. Phys. J. App. Phys, vol.6, pp.1-4147, 1999.

V. Vinogradov and G. W. Milton, An accelerated FFT algorithm for thermoelastic and non-linear composites, International Journal for Numerical Methods in Engineering, vol.34, issue.1-2, p.11, 2008.
DOI : 10.1002/nme.2375

B. S. Anglin, R. A. Lebensohn, and A. D. Rolett, Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions, Computational Materials Science, vol.87, 2014.
DOI : 10.1016/j.commatsci.2014.02.027

H. Moulinec and F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, International Journal for Numerical Methods in Engineering, vol.42, issue.2, 2014.
DOI : 10.1002/nme.4614

URL : https://hal.archives-ouvertes.fr/hal-00787089

J. C. Michel, H. Moulinec, and P. Suquet, A computational method based on Augmented Lagrangians and Fast Fourier Transforms for composites with high contrast, Comput. Model. Engng & Sc, vol.1, pp.2-7988, 2000.

J. C. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non???linear composites with arbitrary phase contrast, International Journal for Numerical Methods in Engineering, vol.58, issue.12, 2001.
DOI : 10.1002/nme.275

F. Willot, B. Abdallah, and Y. Pellegrini, Fourier-based schemes with modied Green operator for computing the electrical response of heterogeneous media with accurate local elds, Int. J. Numer. Methods in Engng, vol.98, pp.7-518533, 2014.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.13-36473679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

L. V. Gibiansky and S. Torquato, Thermal expansion of isotropic multiphase composites and polycrystals, Journal of the Mechanics and Physics of Solids, vol.45, issue.7, pp.7-12231252, 1997.
DOI : 10.1016/S0022-5096(96)00129-9

R. A. Schapery, Thermal expansion coecients of composite materials based on energy principles, Composite Materials, vol.2, issue.3, p.380404, 1968.

B. W. Rosen and Z. Hashin, Eective thermal expansion coecients and specic heats of composite materials, Int. J. of Engrg. Sc, vol.8, issue.2, p.157173, 1970.

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65, pp.5-349, 1952.
DOI : 10.1088/0370-1298/65/5/307

A. K. Ghorai and T. Dutta, Bounds on the eective thermal-expansion coecient of a polycrystalline aggregate, J. Appl. Phys, vol.78, p.4, 1995.

T. R. Middya and ;. A. Basu, ???matrix solution for the effective elastic properties of noncubic polycrystals, Journal of Applied Physics, vol.59, issue.7, p.2368, 1986.
DOI : 10.1063/1.336336

R. Zeller and P. H. Dederichs, Elastic Constants of Polycrystals, Physica Status Solidi (b), vol.241, issue.2, p.831842, 1973.
DOI : 10.1002/pssb.2220550241

Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Sol, vol.54, pp.4-708734, 2006.

P. Bövik, ON THE MODELLING OF THIN INTERFACE LAYERS IN ELASTIC AND ACOUSTIC SCATTERING PROBLEMS, The Quarterly Journal of Mechanics and Applied Mathematics, vol.47, issue.1, 1994.
DOI : 10.1093/qjmam/47.1.17

L. Valenzano, W. J. Slough, and W. F. Perger, Accurate predictions of second-order elastic constants from the rst principles: PETN and TATB, Shock Compression of Condensed Matter, 2012.