H. F. Rizzo, J. R. Humphrey, and J. R. Kolb, Growth of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). II. Control of growth by use of high T g polymeric binders, Propellants and Explosives, vol.6, p.2736, 1981.

J. L. Maienschein and F. Garcia, Thermal expansion of TATB-based explosives from 300 to 566 K, Thermochimica Acta, p.7183, 2002.

D. G. Thompson, G. W. Brown, B. Olinger, J. T. Mang, B. Patterson et al., The eects of TATB ratchet growth on PBX 9502, 2010.

, Propellants, Explosives, Pyrotechnics, vol.35, pp.507-513

R. H. Gee, A. Maiti, and L. E. Fried, Mesoscale modeling of irreversible volume growth in powders of anisotropic crystals, Appl. Phys. Lett, vol.90, p.254105, 2007.

A. Maiti, R. H. Gee, D. M. Homan, and L. E. Fried, Irreversible volume growth in polymer-bonded powder systems: Eects of crystalline anisotropy, particle size distribution, and binder strength, J. Appl. Phys, vol.103, p.53504, 2008.

G. Demol, P. Lambert, and H. Trumel, A study of the microstructure of pressed TATB and its evolution after several kinds of insults, p.11, 1998.

, th Int. Symp. on Detonation

C. B. Skidmore, D. S. Phillips, D. J. Idar, and S. F. Son, Characterizing the microstructure of selected high explosives, 1999.

J. Møller, Random Johnson-Mehl tessellations, Adv. Appl. Prob, vol.24, p.814844, 1992.

L. Heinrich and E. Schüle, Generation of the typical cell of a non-Poissonian Johnson-Mehl tessellation, Commun. Statist. Stochastic Models, vol.11, p.560, 1995.

E. Pineda, P. Bruna, and D. Crespo, Cell size distribution in random tessellations of space, Phys. Rev. E, vol.70, p.66119, 2004.

D. Jeulin, Random tessellations and Boolean Random Functions. Mathematical Morphology and its Applications to Signal and Image Processing, Lecture Notes in Comp. Sc, vol.7883, p.2536, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00739932

C. Lantuéjoul, Sur le modèle de Johnson-Mehl généralisé, 1977.

G. Matheron, Random sets and integral geometry, 1975.

M. Castro, F. Domìnguez-adame, A. Sánchez, and T. Rodríguez, Model for crystallization kinetics: deviation from Kolmogorov-Johnson-Mehl-Avrami kinetics, Appl. Phys. Lett, vol.75, p.2205, 1999.

J. Ferenc and Z. Néda, On the size distribution of Poisson Voronoi cells, Physica A: Stat. Mech. and its Applications, vol.385, issue.2, 2007.

J. Farjas and P. Roura, Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization, Phys. Rev. B, vol.78, p.14, 2008.

D. Jeulin, Morphologie mathématique et propriétés physiques des agglomérés de minerais de fer et du coke métallurgique. Thése de Docteur-Ingénieur en Sciences et Techniques Miniéres, Option Géostatique, 1979.

H. H. Cady and A. C. Larson, The crystal structure of 1,3,5-triamino-2,4, p.6, 1965.

, Acta Cryst, vol.18, p.485496

D. Bedrov, O. Borodin, G. D. Smith, T. D. Sewell, D. M. Dattelbaum et al., A molecular dynamics simulation study of crystalline 1,3,5triamino-2,4,6-trinitrobenzene as a function of pressure and temperature, J. Chem. Phys, vol.131, p.224703, 2009.

J. R. Kolb and H. F. Rizzo, Growth of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). I. Anisotropic thermal expansion, Prop. Expl, vol.4, p.16, 1979.

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and non linear mechanical properties of the composites, C.R. Acad. Sci., II, vol.318, p.11, 1994.

D. Eyre and G. Milton, A fast numerical scheme for computing the response of composites using grid renement, Eur. Phys. J. App. Phys, vol.6, p.4147, 1999.

V. Vinogradov and G. W. Milton, An accelerated FFT algorithm for thermoelastic and non-linear composites, Int. J. Numer. Meth. in Engng, vol.76, p.16781695, 2008.

B. S. Anglin, R. A. Lebensohn, and A. D. Rolett, Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions, 2014.

, Comput. Mat. Sci, vol.87, 209217.

H. Moulinec and F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, Int. J. Numer. Meth. Engng, vol.97, p.960985, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00787089

J. C. Michel, H. Moulinec, and P. Suquet, A computational method based on Augmented Lagrangians and Fast Fourier Transforms for composites with high contrast, Comput. Model. Engng & Sc, vol.1, p.7988, 2000.

J. C. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non-linear composites with arbitrary phase contrast, Int. J. Numer, 2001.

, Meth. Engng, vol.52, pp.1-2, 139160.

M. Sauzay, J. Liu, F. Rachdi, L. Signor, T. Ghidossi et al., Physically-based simulations of the cyclic behavior of FCC polycrystals, 2014.

, Adv. Mat. Res, vol.833839, pp.891-892

F. Willot, B. Abdallah, and Y. Pellegrini, Fourier-based schemes with modied Green operator for computing the electrical response of heterogeneous media with accurate local elds, Int. J. Numer. Methods in Engng, vol.98, issue.7, p.518533, 2014.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. of Solids and Struct, vol.40, p.36473679, 2003.

L. V. Gibiansky and S. Torquato, Thermal expansion of isotropic multiphase composites and polycrystals, J. Mech. Phys. Solids, vol.45, p.12231252, 1997.

R. A. Schapery, Thermal expansion coecients of composite materials based on energy principles, Composite Materials, vol.2, p.380404, 1968.

B. W. Rosen and Z. Hashin, Eective thermal expansion coecients and specic heats of composite materials, Int. J. of Engrg. Sc, vol.8, issue.2, p.157173, 1970.

R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, vol.65, p.349, 1952.

A. K. Ghorai and T. Dutta, Bounds on the eective thermal-expansion coecient of a polycrystalline aggregate, J. Appl. Phys, vol.78, p.4, 1995.

T. R. Middya and ;. A. Basu, Self-consistent Tmatrix solution for the eective elastic properties of noncubic polycrystals, J. Appl. Phys, vol.59, p.2368, 1986.

R. Zeller and P. H. Dederichs, Elastic constants of polycrystals, Phys. Status Solidi B, vol.55, p.831842, 1973.

Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Sol, vol.54, p.708734, 2006.

P. Bövik, On the modelling of thin interface layers in elastic and acoustic scattering problems, 1994.

, J. of Mech. and App. Math, vol.47, p.1742

L. Valenzano, W. J. Slough, and W. F. Perger, Accurate predictions of second-order elastic constants from the rst principles, 2012.

, Shock Compression of Condensed Matter, AIP Conf. Proc, vol.1426, pp.1191-1194