S. Alpert, M. Galun, R. Basri, and A. Brandt, Image segmentation by probabilistic bottom-up aggregation and cue integration, Computer Vision and Pattern Recognition, CVPR'07. IEEE Conference, pp.1-8, 2007.

J. Angulo and D. Jeulin, Stochastic watershed segmentation, Proc. ISMM'2007, 8th International Symposium on Mathematical Morphology, pp.265-276, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01104256

A. Aubert and D. Jeulin, Classiication morphologique de surfaces rugueuses, pp.253-262, 2000.
DOI : 10.1051/metal/200097020247

S. Beucher and L. Ch, Use of watersheds in contour detection, International workshop on image processing, 1979.

A. Cord, D. Jeulin, and F. Bach, Segmentation of random textures by morphological and linear operators, Proc. ISMM'2007, 8th International Symposium on Mathematical Morphology, pp.387-398, 2007.

A. Cord, F. Bach, and D. Jeulin, Texture classiication by statistical learning from morphological image processing. Application to metallic surfaces, Journal of Microscopy, vol.239, pp.159-166, 2010.

R. Duda and P. Hart, Pattern recognition and scene analysis, pp.236-237, 1973.

L. Gillibert and D. Jeulin, Stochastic Multiscale Segmentation Constrained by Image Content, Proc. ISSM 2011, pp.132-142, 2011.
DOI : 10.1007/978-3-642-21569-8_12

URL : https://hal.archives-ouvertes.fr/hal-00577776

L. Gillibert, P. Ch, D. Jeulin, V. Guipont, and M. Jeandin, 3D multiscale segmentation and morphological analysis of x-ray microtomography from cold-sprayed coatings, Journal of Microscopy, vol.33, issue.2, 2012.
DOI : 10.1111/j.1365-2818.2012.03655.x

URL : https://hal.archives-ouvertes.fr/hal-00751923

C. Gratin, J. Vitria, F. Moreso, and D. Seron, Texture classiication using neural networks and local granulometries, Mathematical Morphology and its Applications to Image Processing, pp.309-316, 1994.
DOI : 10.1007/978-94-011-1040-2_40

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Data Mining, Inference, and Prediction, pp.544-547, 2001.

R. Hummel and S. Zucker, On the Foundations of Relaxation Labeling Processes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.5, pp.267-287, 1983.

D. Jeulin, Modèles Morphologiques de Structures Aléatoires et de Changement d'Echelle, Thèse de Doctorat d'Etat ès Sciences Physiques, 1991.

D. Jeulin, Remarques sur la segmentation probabiliste, 2008.

D. Jeulin and M. Moreaud, SEGMENTATION OF 2D AND 3D TEXTURES FROM ESTIMATES OF THE LOCAL ORIENTATION, Image Analysis & Stereology, vol.27, issue.3, pp.183-192, 2008.
DOI : 10.5566/ias.v27.p183-192

URL : https://hal.archives-ouvertes.fr/hal-00830725

D. Jeulin, Probabilistic Hierarchical Morphological Segmentation of Textures, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.313-324, 2015.
DOI : 10.1007/978-3-319-18720-4_27

I. Karoui, R. Fablet, J. M. Boucher, and J. Augustin, Region-Based Image Segmentation Using Texture Statistics And Level-Set Methods, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, 2006.
DOI : 10.1109/ICASSP.2006.1660437

I. Karoui, R. Fablet, J. M. Boucher, W. Pieczynski, and J. Augustin, Fusion of textural statistics using a similarity measure: application to texture recognition and segmentation, Pattern Analysis and Applications, vol.69, issue.1-2, pp.425-434, 2008.
DOI : 10.1007/s10044-008-0108-z

URL : https://hal.archives-ouvertes.fr/hal-01371973

B. Manjunath, T. Simchony, and R. Chellappa, Stochastic and deterministic networks for texture segmentation, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.38, issue.6, pp.1039-1049, 1990.
DOI : 10.1109/29.56064

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Matheron, Eléments pour une théorie des milieux poreux Matheron G (1975) Random sets and integral geometry Morphological segmentation, Journal of Visual Communication and Image Representation, vol.23, issue.1, pp.21-46, 1967.

F. Meyer and J. Stawiaski, A stochastic evaluation of the contour strength, DAGM-Symposium'10, pp.513-522, 2010.

G. Noyel, J. Angulo, and D. Jeulin, MORPHOLOGICAL SEGMENTATION OF HYPERSPECTRAL IMAGES, Image Analysis & Stereology, vol.26, issue.3, pp.101-109, 2007.
DOI : 10.5566/ias.v26.p101-109

URL : https://hal.archives-ouvertes.fr/hal-01220414

G. Noyel, J. Angulo, and D. Jeulin, Classiication-driven stochastic watershed. Application to multispectral segmentation, Proc. Fourth European Conference on Color in Graphics, Imaging and Vision, pp.471-476, 2008.

G. Noyel, J. Angulo, and D. Jeulin, A new spatio-spectral morphological segmentation for multi-spectral remote-sensing images, International Journal of Remote Sensing, vol.2008, issue.22, pp.5895-5920, 2010.
DOI : 10.1109/TPAMI.2007.70817

URL : https://hal.archives-ouvertes.fr/hal-00836063

S. Peleg, A New Probabilistic Relaxation Scheme, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.2, issue.4, pp.362-369, 1980.
DOI : 10.1109/TPAMI.1980.4767035

M. Pesaresi and J. Benediktsson, A new approach for the morphological segmentation of high-resolution satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.2, pp.309-320, 2001.
DOI : 10.1109/36.905239

A. Rosenfeld, R. Hummel, and S. Zucker, Scene Labeling by Relaxation Operations, IEEE Transactions on Systems, Man, and Cybernetics, vol.6, issue.6, pp.420-433, 1976.
DOI : 10.1109/TSMC.1976.4309519

J. Serra, Image Analysis and Mathematical Morphology, 1982.

K. Sivakumar and J. Goutsias, Monte Carlo Estimation of Morphological Granulometric Discrete Size Distributions, Mathematical Morphology and its Applications to Image Processing, pp.233-240, 1994.
DOI : 10.1007/978-94-011-1040-2_30