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Abstract

The paper introduces a new parallel and efficient algorithm for the reinitialization of level set functions on
unstructured Finite Element (FE) meshes in two and three dimensions. The originality of this implemen-
tation lies in the use of a direct method enhanced by a k-d tree space partitioning technique. Different
test cases illustrate the potential of the method for typical metallurgical and micromechanical problems
with isotropic and anisotropic meshes. Comparison with other classical reinitialization methods, such as
Hamilton-Jacobi formulations, proves that the proposed method guarantees optimal accuracy together with
importantly reduced computational costs.
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1. Introduction

Most problems in materials science at the microscale involve multiphase formulation and tracking of
dynamic interfaces, e.g. recrystallization, grain growth, fracture mechanics, ductile damage, etc. Thanks to
the explosion of large scale parallel computations, these phenomena can now be simulated at a Representative
Volume Element (RVE) scale. Among existing approaches, the Level Set (LS) method introduced in 1988 [1]
receives a growing attention. In the LS method each phase of the simulation is represented by a LS function
evaluated at mesh nodes. This function can simply be defined as a binary function equal to 1 inside the
phase and 0 elsewhere, as proposed in [2]. This approach does nevertheless not provide a precision greater
than the mesh size. A well-known alternative consists in defining the LS function ψ(x, t) on the domain Ω
as a signed distance function to the interface Γ:

∀t
{
ψ(x, t) = ±d(x,Γ(t)), x ∈ Ω,
Γ(t) = {x ∈ Ω, ψ(x, t) = 0} , (1)

where d(., .) is the Euclidean distance and the sign depends on whether the node is located inside or outside
of the represented object. In an Eulerian context, the evolution of this function is classically computed by
solving a transport equation involving the velocity field ~v. This formulation has been employed to simulate
a wide variety of mechanical and metallurgical phenomena [3, 4, 5, 6].

A major drawback of this formulation lies in the fact that after transport, in general, the function is no
longer a distance function. This is particularly problematic when a specific remeshing technique depending
on the distance property is used at the interface [3]. In addition, some phenomena, such as curvature-driven
interface motions, require a distance function at least in a thin layer around the interface in order to compute
properly the corresponding velocity field [7]. Finally, the conditioning of the transport problem also depends
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on the regularity of the LS function [8]

For these reasons, the distance function needs to be reinitialized. Indeed, restoring the metric property is
equivalent to solving the following eikonal equation:

∀t
{
‖∇ψ(x, t)‖ = 1, x ∈ Ω,
ψ(x, t) = 0, x ∈ Γ(t).

(2)

There exist different approaches to solve this equation including the well-known Fast Marching Method
introduced by Sethian [9] which propagates a front from the interface and ensures directly a gradient equal
to unity. Though this approach has been later extended to unstructured meshes [10], its implementation
becomes extremely complicated when it comes to consider anisotropic (i.e. obtuse) triangulations [11]. The
latter relies on the insertion of numerical supports for obtuse triangle and is mentioned as ”cumbersome” in
[11]. To our knowledge, this variant is not used in the recent literature. Another major drawback of the Fast
Marching Method lies in the parallel implementation. More specifically, the algorithm has to be performed
several time on each partition to synchronize the values between the processors, which requires significant
implementation effort and poor parallel efficiency.

In [12], a Hamilton-Jacobi (H-J) formulation equivalent to (Eq. 2) was proposed in order to correct itera-
tively the level set values around the interface by solving a partial differential equation (PDE). This method
thus requires the definition of a purely numerical parameter known as the fictive time step for reinitializa-
tion ∆τ . This quantity is generally of order of the mesh size h in the direction normal to the interface.
For convenience we assume in the following that ∆τ = h. By noting ε the reinitialized thickness, ε/∆τ
increments are then needed to reinitialize completely the layer ψ ∈ [−ε, ε].

More recently, coupled convection-reinitialization (CR) methods emerged wherein the LS function is auto-
matically reinitialized during the resolution of the transport equation [8]. Their main advantage lies in the
fact that only one solver is needed for the simulation instead of two for the classical H-J technique. The
signed distance function can also be replaced by any smooth function which satisfies the metric property, at
least in a thin layer around the interface. In the following these two variants will be mentioned: the former
using a classical distance function (CR-DF) and the latter working with a hyperbolic tangent distance func-
tion ψ̃ = E · tanh(ψ/E) (CR-HTDF). Since the hyperbolic tangent function has a gradient close to one only
in the neighborhood of zero, the truncation thickness E has to be chosen big enough to verify the metric
property at least in a thin layer around the interface.

Finally, a natural way to reinitialize LS functions consists in using a brute force algorithm to perform a
complete reconstruction of the distance function. This technique works in two steps: discretize the interface
(zero-isovalue of the LS function) into a collection of simple elements and, for every node, compute the
distance to all elements of the collection and store the smallest one which becomes the updated value of
the distance function. Though it guarantees optimal accuracy, this direct reinitialization (DR) technique is
generally mentioned as extremely greedy in terms of computational requirements in the literature [12, 13].
Hence it is carefully avoided in most implementations, with the exception of [6]. In [14], a review of various
improvements to this method proposed in literature to overcome this difficulty can be found. These works
generally address only regular grids or hierarchical meshes [15].

In the following, the DR method is investigated and a new parallel and efficient implementation is proposed
for unstructured and possibly anisotropic meshes. It is then compared to other approaches in terms of
accuracy and numerical performances. Applications addressed here cover full field grain growth simulations
and ductile damage modelling at the microscale.
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2. Algorithm

As stated above, the DR method which is a basis for the present work starts from a simple idea, illustrated
in Fig. 1. In the frame of P1 (linear by element) interpolation, the LS function is represented by its values
at mesh nodes. On each element crossed by the interface, a discrete representation of a portion of the
interface is constructed giving in the end a mesh of the whole interface. For sake of clarity, we name mesh
the initial finite element (FE) mesh, and collection this 1D or 2D interfacial mesh. Hence, reinitialization
of the signed distance function can be performed at any mesh node by searching the closest edge or triangle
in the collection. As the computation of the distance to an edge or a triangle will be a critical operation
in this part of the algorithm, we chose to use the optimal implementations detailed in [16]. The sign of the
reinitialized function can then be taken as the one of the initial LS function. It can be seen that opposed
to H-J approaches mentioned above, the DR method is way more accurate: given a P1 representation of a
LS function, the DR method performs an analytical resolution. Nevertheless, this method, if used as is, has
important costs.

ψ(x) = 0

(a)

d1

d2

d3
d4

x

ψ(x) = 0

(b)

Figure 1: (a) Zero isolevel of the level set ; (b) Location of intersections between
the interface and element edges through linear interpolations ; (c) Contour
segmentation ; (d) Computation of the point-to-point distance and storing of
the minimal value ψ(x) = min(di) ∀i ∈ 1, ...,m.

Figure 1: Direct reinitialization method on a P1 mesh: (a) collection construction ; (b) distance computation.

In the following, n represents the number of nodes in the mesh, and e is the number of elements in the
collection. Using these notations, collection construction is of complexity O(n), while distance computation
is of complexity O(n · e). Hence, this last operation is too costly and makes the algorithm unsuitable for
computations, especially in 3D. This is basically the reason why H-J methods are usually preferred.

Based on techniques widely used in computer graphics, data mining, and other domains, we propose a new
direct reinitialization method, where the cost of distance computation is importantly reduced. This opti-
mization is based on a space partitioning technique. Such technique consists in dividing the space, here the
collection, in several parts, thanks to a suitable criterion. More precisely, hierarchical space partitioning
techniques consist in dividing the space into p parts, and applying the same procedure to these parts, and
so on, until small parts are obtained where searching or pruning can be performed at acceptable costs. Here
p is a constant number inherent to the used methodology. For example, one may cite quad-trees in 2D,
with p = 4, where the whole space is placed in a bounding box, which is divided in 4 boxes of identical
dimensions, corresponding to the four quarters of the initial box (these boxes are then divided again, and
so on). Using such systematic division, one or several boxes may be empty at some stage, and the division
may not be optimal, especially in the present case with unstructured and possibly anisotropic meshes. The
same statement can be made regarding oc-trees (p = 8), which are the 3D equivalent to quad-trees.
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That is the reason why it is chosen to partition the space hierarchically using a k-dimensional (k-d) tree,
where the division is always made into p = 2 parts, using a criterion which depends on the considered set
of elements. This structure was first introduced in [17], with examples of potential applications. Among
these applications, we will focus here on Nearest Neighbor Searches (NNS): for each node of the mesh, we
want to find the nearest element in the collection. We explain in the following a methodology, named Direct
Reinitialization with Trees (DRT), which reduces the complexity of distance computation to O(n log e).

Opposed to systematic methods, the division criterion will here be based on an analysis of the space that is
to be divided. In the present case, this space is the initial collection, or a sub-set of it, which can both be
addressed as a set of elements, and division in 2 parts will be obtained using a division plane. Optimally,
this plane should divide the given set into 2 sub-sets containing the same number of elements. To narrow
such result without adding too important costs, it is here chosen to use planes normal to the Cartesian axis,
and centered respectively to the set of elements. This centering is obtained by computing the barycenter of
each element, and choosing a plane that goes through the barycenter of these points. The whole process of
tree construction is given below:

(b.1) Set the division plane (line in 2D) as the plane going through the barycenter of all elements and having
its direction alternatively defined by the x, y and z directions depending on the depth in the tree.

(b.2) Compute the signed distance from the vertices of all the elements in the collection to this plane.

(b.3) Build a left child to the current tree by going back to (b.1) with all the elements having at least a
vertex with negative plane distance.

(b.4) Build a right child to the current tree by going back to (b.1) with all the elements having at least a
vertex with positive plane distance.

As illustrated in Fig. 2, this process recursively builds a binary tree. As observed in Fig. 2.c, it ends when
at steps (b.3) and (b.4) one of the two subtrees contains the other. In such situation, a leaf is created,
and instead of containing a plane and two subtrees, this leaf contains only the remaining elements of the
collection. Regarding the division plane, it is easy to find geometric configurations where the used simple
definition does not divide the elements in two balanced subtrees. However, such situations are not met
in practice, and tests have shown that this definition leads to a globally balanced tree. Regarding costs,
the computation of the barycenter is performed in linear time, and because at each stage the number of
considered elements should be divided by 2, the global tree construction operation is of optimal complexity
O(e log e).
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Figure 2: Example of recursive tree construction in 2D.

NNS queries can then be performed for each node of the mesh using the following algorithm at the root of
the tree:

(b.5) Compute the signed distance from the node to the division plane.

(b.6) If it is negative, go back to (b.5) with the left subtree.

(b.7) If it is positive, go back to (b.5) with the right subtree.

This recursive process will reach a leaf, where distance computation will be performed by considering one
by one all the elements stored in this leaf. Then, it may appear at steps (b.6) or (b.7) that the resulting
distance is bigger than the distance to the division plane. In such case, it is required to go back to (b.5)
with the other subtree. Though this operation is implemented to ensure consistency, it is not met often if
the planes are well defined, as in our applications. Moreover, due to all the divisions, the set of elements
stored in any leaf should be small enough to consider that distance computation is of optimal complexity
O(n log e).
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Figure 3: Example of recursive distance computation in 2D with the DRT method, best case scenario.

In the examples shown in Fig. 3 and Fig. 4, the distance from a point x to the interface needs to be
computed. At each stage of the NNS, the notation dp is the distance to a division plane, obtained at an
intermediary node of the tree, the distance de is the distance to an element, obtained at a leaf of the tree,
and d+ is the final result. In the first case (Fig. 3), the point is optimally located since it is close enough to
the interface. Hence, browsing two levels of the tree in (a) and (b) leads directly to the correct leaf in (c),
and since when browsing back in (d) and (e), the obtained distance is smaller than the distance to any of
the division planes, this distance is the final result. In the second case (Fig. 4), a worst case scenario occurs.
The point is a located in a leaf (b) which gives a distance smaller than the distance to the first division plane
(a). Hence, the other part of the tree has to be browsed (c). In this part of the tree, an optimal situation
is met as the recursive browsing (d) and (e) gives the final result.
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Figure 4: Example of recursive distance computation in 2D with the DRT method, worst case scenario.

In the introduction, it was mentioned that H-J approaches, because of prohibitive costs, are usually applied
only in a small thickness around the interface. Implementing the same optimization to the DRT method
can drastically reduce distance computation costs. The first step of the implementation consists obviously
in executing NNS queries only for the nodes located in the reinitialization zone. Then, at step (6) and (7),
if the resulting distance rises a need to look in the other subtree but the distance to the plane is bigger than
the thickness used for reinitialization, this operation can be skipped. Because in practice the thickness is
small enough to reduce the order of n to the same order as e, the final complexity of the new DRT method is
expected to be O(e log e). Moreover, using this optimization it appears that the best case scenario illustrated
in Fig. 3 occurs more often than the worst case one, because the point x will always be located close to the
interface.

Massively multi-domain computations often require an important computational power to obtain a good
accuracy. The same remark can be drawn for 3D computations. For this kind of simulations, a classical
choice is parallelization using the distributed memory paradigm. Opposed to shared memory, distributed
memory enables each parallel unit, called process, to have a separated memory, and to be possibly located on
a different machine. This last point is essential for large scale computations, where the whole mesh cannot
be stored on a single machine. This paradigm nevertheless raises an issue in our case: since each process will
only have the knowledge of a part of the mesh, it will only be able to build a part of the collection; hence it
will not be able to compute distances to the collection. To solve this issue, one could simply communicate
gather the full collection on each process, and then build the k-d tree on each process. Experiments have
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showed that though this method has a good performance for a small number of processes (up to 20), it has
a poor parallel speed-up.

To retrieve parallel efficiency, an advanced technique has been developed. In this method, each process
builds its own collection and its own tree, ignoring other processes. Then, a bounding box system is used.
Each process computes the minimal box aligned to Cartesian axis that can contain completely its collection.
At the step of distance computation, each process will compute first the distance using its tree, and then
will interrogate one by one the processes when they can improve this distance. This parallel implementation
is summarized in Fig. 5. In this illustration, distance computation to point A is local since it is shorter than
the distances to boxes 0, 2 and 3. Regarding point B, the distance to box 2 (in broken line) is shorter than
the local distance computation performed inside process 3. Hence, the distance from B to 2’s collection is
computed and chosen as it is shorter than the previous one.

 

0 

1 

2 

3 

A 

B 

Figure 5: Bounding boxes on a 2D example with 4 processes (identified by the color code). The solid white line is the interface,
and the arrows represent distance computation steps.

It can already be seen on this example that bounding boxes are not optimal, as box 2 nearly contains box
3. It is however expected that for a large number of processes and a good repartition of the interface,
communications will be minimized and optimal parallel efficiency reached. This bounding box technique at
the global level completes the k-d tree optimization used at the local level, and the DRT method can now
be applied to perform LS reinitialization in parallel.

3. Results

In this part, numerical results obtained with the new DRT method are provided. Both DR and DRT
method were implemented within the parallel C++ library Cimlib [8]. Regarding the H-J, CR and CR-
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HTDF methods that are used for comparison, parallel implementations were already provided by the library.
All the following computations were performed on the same 1.2GHz Intel Xeon Linux cluster.

3.1. Academic cases

The first test case proposed is a square (respectively a cube in 3D) centered in a 1× 1mm2 (respectively
1 × 1 × 1mm3 in 3D) domain and subjected to a velocity field equal to the LS function gradient ~v = ∇ψ.
The parameter E for the CR-HTDF solver is set to E = 20h and ε = E is kept for all methods in order to
perform a fair comparison. The theoretical values of the LS function ψtheo(x, t) and the theoretical internal
area (respectively volume in 3D) ftheo are calculated through:{

ψtheo(x, t) = ψ(x, 0)− t,
ftheo(t) = (l0 − 2t)

d
,

(3)

with t ∈ [0, l0/2]. The terms d and l0 correspond respectively to the spatial dimension and the initial
edge length of the square/cube, which is chosen equal to 0.5mm both in two and three dimensions. The
simulation time step is calibrated separately so that the global error on the internal area given by (Eq. 4)
remains lower than 1%.

L2 =
‖ftheo(t)− f(t)‖t∈[0,0.25]2

‖ftheo(t)‖t∈[0,0.25]2

. (4)

3.1.1. Shrinking square (2D)

In this two-dimensional test case, a fixed unstructured and homogeneous mesh is used. The number of
elements is equal to 150000, which corresponds to an averaged mesh size h ≈ 4µm. The main results of this
set of simulations are summarized in Table 1.

Method H-J CR-DF CR-HTDF DRT
∆t (s) 0.01 0.0001 0.0001 0.001
ttransport (s) 6.4

85.1 86.7
5.8

treinit (s) 133 0.4

Table 1: Results of shrinking square simulations run on 4 CPUs. For the CR solvers, the LS function is automatically
reinitialized during the transport, which is why there is only one time for these two steps.

The new algorithm appears to be clearly the most efficient among all methods and is up to 300 times faster
than the H-J approach. The CR solvers are proving more effective than the H-J method but require a
very small time step to guarantee scheme stability. Let N be the set of nodes belonging to the layer ±5h
around the interface, the relative discretization error R(t) between the exact and computed LS functions is
calculated through:

R(t) =
‖ψtheo(x, t)− ψ(x, t)‖N2

‖ψtheo(x, t)‖N2
with ‖u(x, t)‖N2 =

√∑
n∈N

u(xn, t)2. (5)

Such small layer is chosen because both CR methods are only valid close to the interface [8].

9



0 5 · 10−2 0.1 0.15 0.2 0.25
0

20

40

60

t (s)

R
el
at
iv
e
d
is
cr
et
iz
at
io
n
er
ro
r
R
(t
)
(%

)

DRT
H-J
CR-DF
CR-HTDF

(a)

CR-HTDF CR-DF

H-J DRT

(b)

Figure 6: Relative discretization error R(t) between the exact and computed distance functions around the interface ±5h ; (b)
values of ‖∇ψ‖ for each method.

Fig. 6.b illustrates the inability of the CR solvers to properly maintain the metric property, especially in
the corner vicinity. On the other hand, the DRT and H-J methods exhibit a high level of accuracy. This
first 2D test case thus demonstrates the proposed algorithm is both extremely fast (Table 1) and accurate
(Fig. 6).

3.1.2. Shrinking cube (3D)

A similar case is now investigated in 3D. In order to limit the number of elements, a remeshing operation
is performed at each time step with the parallel topological mesher/remesher MTC implemented in the used
library. An a posteriori strategy is employed to construct the metric field needed for the mesh adaptation.
The interested reader can find more details in [18]. Elements located near the interface are then stretched
to form a refined and anisotropic layer with thickness 2ε around the zero iso-level. Outside this zone, the
mesh is kept coarse (Fig. 7).
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(a) t = 0s (b) t = 0.08s

(c) t = 0.16s (d) t = 0.24s

Figure 7: Anisotropic mesh used for the shrinking cube test case. The red thick line indicates the zero iso-level.

For this set of simulations, the total number of elements in the domain is equal to 500000. The local mesh
size h in the refined layer thus constantly evolves during the simulation. The parameters ε and ∆τ are
therefore updated at each time step in order to maintain ε = E = 20h and ∆τ = h. The time steps for all
methods are chosen identical to the ones calibrated for the two-dimensional case (cf. Table 1).

In the addition to the use of an anisotropic mesh, this case is also critical for non-direct approaches because
the gradient is poorly defined along bisecting planes and diagonals. Hence, the linear problems built by
the H-J solver also have a poor conditioning (on average 430 iterations are performed by the used GMRES
iterative solver in 3D compared to around 20 in 2D). During the simulation, one observes furthermore the
appearance of a parasite phase outside the cube (Fig. 8). It proves the function becomes too irregular to
be properly reinitialized leading to a modification of sign of the LS function. The interface of this parasite
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phase is then automatically detected and captured by the remesher which adapts the mesh around it. As
the total number of elements is fixed, the calculation accuracy then falls because fewer elements are used to
represent the cube interface.
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Figure 8: Evolution of the cube internal volume and appearance of a parasite phase with the H-J approach due to an unsatisfying
reinitialization of the LS function.

The CR solvers exhibit unstable behaviors although the simulation time step remains an order of magnitude
lower than the mesh size in the refined zone (no violation of the stability condition). These approaches
seem therefore to be less robust than the H-J and direct ones. In addition they require a good knowledge
of the parameters needed for the stabilization. Results obtained with the direct and H-J approaches are
summarized in the Table 2.

Method H-J DRT
R(t) (%) 57 0.54
treinit (s) 263.6 52.8

Table 2: Results of shrinking cube simulations run on 20 CPUs.

In 3D, the DRT algorithm appears to be around five times faster than the H-J approach, while keeping a
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very high accuracy. The gain in terms of computational performances is then smaller than in 2D. Neverthe-
less, one should note this configuration is particularly unfavorable to our algorithm. During the simulation,
the cube rapidly shrinks and becomes very small compared to the size of the domain. Considering our
partitioning strategy and the number of processors involved (20 CPUs for the cube shrinking case), the
whole interface is poorly distributed across the CPUs. The parallel implementation described earlier thus
becomes far less efficient. This is no longer true for massively multiphasic systems such as discussed in the
next section wherein interfaces are naturally spread in a balanced way across the processes.

These simple academic test cases then confirm the superiority of the proposed algorithm and demonstrate
its robustness. It appears to be also well-suited with particular triangulations (anisotropic meshes) and
does not require any calibration, contrary to other classical methods which require at least one numerical
parameter.

3.2. Ideal grain growth

The second test case is an extremely popular problem in material science: ideal grain growth. As men-
tioned earlier, this problem is particularly interesting because it involves a large number of LS functions
Nf >> 1. An efficient reinitialization of the LS functions is then essential when it comes to reduce the com-
putation time. During grain growth, the normal velocity of the grain boundaries (i.e. interfaces delimiting
the grains) is proportional to their mean local curvature κ which can be expressed as follow:

~v = mγκ~n = −mγ∇ ·
( ∇ψ
‖∇ψ‖

) ∇ψ
‖∇ψ‖ , (6)

with ~n the unit outward normal vector and mγ a material parameter taken here equal to 8.28×10−7mm2/s
which is representative of a 304L austenitic steel at 1050◦C [7]. In a P1 framework such as used in our
numerical formulation, computing the mean curvature would rely on a Hessian recovery technique which
would induce unacceptable errors [5]. It is thus impossible to use the CR solvers for this application. An
alternative approach consists in reformulating the problem as a pure diffusion one, by assuming the LS
function satisfies ‖∇ψ‖ = 1 around the interface. The reinitialization is therefore fundamental for this
application. Further details can be found in [5, 7]. In order to remove kinematics incompatibilities a
particular treatment is performed on each LS function ψi(x, t):

ψ̃i(x, t) =
1

2

(
ψi(x, t)−max

j 6=i
(ψj(x, t))

)
. (7)

This treatment removes vacuums regions at multiple junctions (with a precision equal to the local mesh size)
but also strongly alters the LS functions outside the grains, leading to catastrophic results if the function is
not reinitialized (Table 3). Another strategy to deal with these kinematic incompatibilities can be found in
[6].This set of simulations is performed on a 8 × 8mm2 domain with a fixed homogeneous mesh composed
of one million elements. The initial microstructure contains around 3600 grains represented by only 27 LS
functions thanks to a graph coloring technique (see Fig. 9). The evolution of the mean grain size is tracked
and the well-known Burke & Turnbull model is used as reference solution. The reinitialized thickness is
fixed to ε = 20µm.
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Figure 9: (a) 2D initial microstructure used for grain growth. The color scale corresponds to the grain size ; (b) evolution of
the mean grain size and coarsening of the microstructure.

This benchmark is also used to compare the optimized (DRT) and non-optimized (DR) versions of our
algorithm, which have respective complexity of O(n log e) and O(n · e). The parallel implementations are
also challenged by running simulations on 4, 8 and 16 CPUs.

Method Without reinit H-J DR DRT
Comparison with B&T theory (%) 72 < 3

treinit (h)
4 CPUs 7.74 4.2 0.09
8 CPUs 5.02 3 0.07
16 CPUs 2.48 1.52 0.03

Speedup (4/16 CPUs) 3.12 2.76 3

Table 3: Results of 2D grain growth simulations. The total duration of the heat treatment is equal to 5h.

It appears both the direct and H-J methods are in good agreement with the Burke & Turnbull model. The
reinitialization times for the H-J and DR approaches are of the same order while the DRT one is around 80
times faster than the H-J method between 4 and 16 CPUs. The interest of using a k-d tree appears clearly
here. These results also validate the parallel implementation of our algorithm which exhibits a speedup
comparable to the H-J solver.

3.3. Void growth

For this last test case, modelling of ductile damage at the microscale is addressed. In a recent experi-
mental study [19], sheets containing laser drilled holes were submitted to vertical tension. The influence of
the angles and distances between voids on growth and coalescence was investigated. Experiments showed
that most analytical models fail to predict correctly coalescence in non-academic cases. As these models are
the basis of most Gurson-type laws which are used at the macroscale, a better understanding and modelling
of ductile failure at the microscale is necessary. In most works, a void is embedded in a small domain called
unit cell, where periodic boundary conditions are used to enable the study of multiple voids. In a recent

14



publication [20], a new Lagrangian framework based on the LS method was developed and applied to the
modelling of void growth. In this framework, any configuration of voids was embedded in a larger cubic
RVE, and anisotropic mesh adaptation was used to have a finer mesh close to the microstructure and a
coarser mesh in the rest of the domain.

In the following, this numerical method is detailed and then enriched with the new DRT method. As stated
above, an isotropic mesh refinement is used to progressively refine the mesh from the boundaries of the RVE
to its center, where the microstructure is located. At the interfaces between matrix and voids, an anisotropic
mesh is built using the methodology proposed in [3]. Close to the interface, a small mesh size is fixed in the
normal direction, and the refinement in the other directions depends on local curvatures. To compute the
normal vector to the interface and the curvatures, the gradient and the Hessian matrix of the LS function
representing the void phase are used. The particularity of this framework is that it is Lagrangian hence the
LS function is convected directly by mesh motion. Since the voids grow and may even change shape during
simulation, no LS reinitialization may lead to improper mesh adaptation.

In the 2D example shown in Fig. 10, a void coalescence simulation is performed without (a,b,c) and with
(d,e,f) LS reinitialization. In pictures (a) and (d), it can be seen that due to the vertical tension applied
on the RVE, necking appears at the intervoid ligament. Pictures (b) and (e) show a zoom on this ligament.
Without reinitialization, the mesh is tightened, while with a proper distance function, the mesh can be
adapted identically on the whole interface. Coalescence is then triggered by inserting small voids inside the
ligament. These voids grow rapidly and lead to pictures (c) and (f). Obviously, only LS reinitialization can
enable a correct tracking of interfaces.

15



(a) (d)

(b) (e)

(c) (f)

Figure 10: 2D example of void (in blue) coalescence without (a,b,c) and with (d,e,f) reinitialization.

Since the framework is Lagrangian, the CR method cannot be used. Hence, both the new DRT and the clas-
sical H-J approaches are applied to the 3D version of the configuration presented in Fig. 10. A 1×1×1mm3

RVE is subjected to vertical tension at a constant velocity with a sticking boundary condition. On this 3D
case, no coalescence is triggered, and the resulting void shapes at 20% of elongation are shown in Fig. 11.

To reach 20% of elongation of the RVE, which corresponds to 200 time steps and LS reinitializations, the
H-J method takes 127 minutes on 16 processors, while the new DRT method takes 23 minutes in the same
configuration. Though the efficiency of the DRT method compared to the H-J method was already proven in
previous simulations, this test case confirms the superiority of the DRT approach when the reinitialization
thickness becomes large.
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(a) (b)

Figure 11: Equivalent plastic strain and void shape after 20% of vertical elongation.

Conclusion

While indirect methods to reinitialize Level Set functions were historically developed to avoid the com-
putational costs required by direct methods, it was proven in this paper that this idea is questionable. For
example, it was proven that a simple Direct Reinitialization through a brute force algorithm can compete
with a Hamilton-Jacobi approach in terms of performance for massively multi-domains problems such as
grain growth in polycrystalline aggregates. Then, based on a k-d tree sorting of the interface discretization,
a new Direct Reinitialization with Trees method was proposed and applied to three different test cases
arising from different contexts. This parallel and optimized DRT approach proved to be as accurate as a
classical DR method, while being up to 20 times faster. Computation time reduction was also observed
compared to a Hamilton-Jacobi formulation, with speed-ups between 5 in 3D and 300 in 2D. Additionally,
direct methods, including the new DRT technique, revealed being the most accurate in theory as in practice.
All tests were performed with unstructured 2D or 3D meshes, and anisotropic mesh adaptation for the third
one, to illustrate that the proposed method remains as efficient in all these configurations. However, it was
mentioned that the efficiency of the bounding boxes method used for the parallel implementation highly de-
pends on mesh partitioning. Taking the interface into account inside the mesh partitioning algorithm should
be considered in order to further improve the parallel performance of the algorithm for general applications.
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