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Abstract 
This paper presents the first passive solar wall providing simultaneously super insulation, 

heat storage and daylighting to the inner space. The wall’s external layer is composed of a 

silica aerogels bed for high insulation and solar radiation transmission. The second layer, 

internal, is composed of glass bricks filled with a eutectic phase change material (PCM) for 

heat storage and restitution. The whole wall is translucent. The experimentations carried out 

to characterize thermal and optical properties of the materials used are described. Then 

results are given for a full scale comparative experimentation on a twin zones building 

located in the south of France for the solar wall and a standard opaque high thermal capacity 

wall. Results show the heat losses through the wall are very low while the heat and light 

gains are high: The U value of the solar wall is 0.59 W.m-1.K-1 and 0.72 W.m-1.K-1 respectively 

when the PCM is in liquid and solid state. With the test building in free floating condition, the 

temperature difference between the outdoor and indoor air provided by the wall is about 9°C 

in winter. The wall can provide up to 500 lux to the inner environment, which is sufficient for 

conference rooms. The tested wall has proven more effective in winter and shoulder season, 

particularly for cold sunny climates, but may cause overheating in summer. 
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1. Introduction 
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Buildings account for around 40% of the primary energy consumption worldwide (IEA, 

2014) and 43% in France (ADEME, 2014). To reduce this share, passive solar techniques 

have been investigated for decades. Among these, one of the most ancient is the Trombe 

wall, which principles were patented by Morse (1881). Trombe walls consist of an external 

glazing facing the winter sun, a few centimeters wide air channel, and a high heat 

capacitance wall in contact with the indoor environment (Trombe, 1973; Ohanessian and 

Charters, 1978). Thanks to the greenhouse effect within the air channel, they can reduce the 

energy bill by 20 to 30% virtually in all climates (Sebald et al., 1979; Krüger et al., 2013; Bojic 

et al., 2014), especially when the air gap is vented (Akbarzadeh et al.1982, Yanfeng et al. 

2013). Among drawbacks often cited for Trombe walls, there are the cost, the delicate design 

and operation for the air gap and vents, and the absence of light transmission through the 

wall.  

To overcome the latter and to enhance the Trombe wall heat storage performance, some 

researchers have replaced the high heat capacitance wall by phase change materials (PCM).  

Phase change materials store or release heat during their reversible solid – liquid or liquid – 

gaz or solid - solid cycles. Due to their high latent heat, those materials have been 

extensively developped and used to enhance thermal inertia and delay heat release in 

various applications (Zalba et al., 2003) including buildings (Ahmad et al., 2006; Tyagi and 

Buddhi, 2007; Kuznik et al., 2011; Biwole et al., 2013). In 1978, Telkes (1978) showed the 

potential of replacing the regular masonry in Trombe walls by a Glauber salt PCM. The next 

year, Farouk and Guceri (1979) substituted the high heat capacitance wall by a Glauber salt 

mixture (Na2SO4.10H2O) and a P-116 wax to provide night-time heating. More recently, 

Fiorito (2012) did a parametric study on the use of PCM in Trombe walls by varying the PCM 

position and the melting point temperature for five different climates. All three teams found 

comparable or enhanced performances for the modified Trombe wall.  

Zalewski et al. (2012) experimentally studied a Trombe wall with PCM components inside 

the air channel and an insulating panel instead of the high capacitance wall. Their system 

increased the heat storage capacity of the wall, prevented the air circulation inversion within 

the channel –phenomenon that can occur when the wall temperature becomes lower than 

the room temperature – but the light transmission was still absent. De Gracia et al. (2013) 

also studied an experimental Trombe wall with PCM during winter period. In their system, 

four vent shutters allowed the air to move from the exterior to the interior, thus providing both 

free ventilation and free heating of the building thanks to the natural convection in the 

channel. By closing the inner vents, they were also able to quicken the solidification process 

of the PCM. Yongcai and Shuli (2014) used the Trombe wall principle to design a solar 

chimney including a glazing and a PCM.  
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The present paper investigates the behavior of an unvented Trombe wall composed of a 

super insulating silica aerogels layer later referred to as the Transparent Insulation Material 

(TIM) layer, and a PCM layer. Silica aerogels are highly insulating transparent materials with 

high porosity and pore size less than 1μm (Bisson, 2004). They are produced from the 

synthesis, ageing and drying of silica based colloids (Pajonk et al., 1995; Pierre and Pajonk, 

2002; Dorcheh and Abbasi, 2008). Their transparency and insulation properties heavily 

depend on the process of their production (Pajonk et al., 1997; Rigacci et al. 1998). They 

have been searched for integration in buildings wallboard (Spaceloft, 2014), as external 

coating to suppress thermal bridges in retrofitting cases (Ibrahim et al., 2014) and to enhance 

the thermal insulation of double glazing windows (Rubin and Lampert, 1983; Reim et al., 

2002; Schultz et al. 2005). They are also very good acoustic insulation materials due to their 

high sound absorptivity and a lower-than-air velocity of sound propagation (Hannoun et al., 

1994; Gibiat et al., 1995; Forest et al., 2001). 

The passive solar wall discussed in this paper is composed of a glass facing the outside, 

a gap filled with silica aerogel for light transmission, heat and sound insulation and for 

greenhouse effect, and glass bricks filled with an eutectic PCM for solar energy storage and 

thermal inertia. Section 2 describes the experimental wall. Section 3 presents the optical and 

thermal characterization of the chosen PCM, silica aerogel and also presents the full scale 

experimental building. Section 4 shows the results of the monitoring of the full scale wall 

under four different climate conditions. Finally, the wall’s experimental behavior and 

performance are discussed in section 5. 

 

2. System description 
 

The TIM-PCM wall presents a double layer design (Fig.1). The outer (TIM) layer is 

composed of a 4cm gap formed between the bricks and a 0.8 cm-large glass pane, filled with 

silica aerogel granulates. This layer is highly translucent and provides super-insulation. The 

inner layer is composed of glass bricks of dimension 19 cm x19 cm x 5 cm filled with PCM. 

This layer is mainly designed to provide radiation absorption, energy storage, and 

daylighting. A wood frame maintains the system as a prefabricated assembly. 

 

 
3. Experimentations 

 
Experimentations were made at different scales of the system to fully apprehend its 

physical properties and behavior. First, silica aerogel and PCM thermal and optical properties 

were separately characterized. Then, a small sized TIM-PCM wall was experimented in 
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laboratory conditions to study the whole system thermal and optical behavior. Finally, full 

scale in-situ experimentations were carried out on a double zone test cell in Sophia Antipolis, 

South France, in order to have a feed-back in real conditions. 

 

3.1. Material’s characterization 

 

Phase Change Material 

The PCM used in the TIM-PCM wall is an eutectic of fatty acids. The main advantages of 

this eutectic are a long-term stability throughout time and cycling processes, and a phase 

change at a comfortable temperature. The thermo-physical properties of the chosen PCM 

are shown in Table 1. 

Enthalpy measurements using Differential Scanning Calorimetry (DSC) were made to 

fully characterize the PCM thermal properties, especially during phase change which is the 

most sensitive part of the process (See Fig. 2). The scanning speed of 0.05 K.min-1 was set 

up as the standard temperature-change speed in buildings. The DSC curves show the PCM 

behavior during fusion and solidification processes. A slight difference appears between 

measured properties (summarized in Table 2) and previous theoretical properties (Table 1). 

Those differences are visible in the form of a hysteresis on Fig. 2 and can be explained by 

the lack of purity of the eutectic and the applied loads solicitations. 

Since the TIM-PCM wall aims to absorb visible radiation and provide daylighting, optical 

measurements according to the EN410 norm were made to characterize the transparency of 

the PCM. The reflectance and transmittance for the energetic and optical parts of the 

radiation are measured for normal hemispheric, 15°, 30°, and 45° orientations of the incident 

beam directions. To do so, a 3 cm thick test tube was characterized while empty, and then 

characterized again when filled with PCM in solid and liquid states. The transmission and 

reflection coefficients τnh and ρnh, of the PCM alone, for a normal hemispheric incident 

radiation, are displayed in Table 3. The measured properties fit the requirements of the wall 

in terms of absorption and transparency, since it absorbs 47 % of the energetic radiation in 

solid state and transmits 78 % of optical radiation in liquid state. The only shortcoming is that 

it cannot provide daylighting when in solid state. This is taken into account in the wall design, 

the transparent edges of the glass bricks contributing to provide daylighting. 

 

Silica aerogel 

A silica aerogel granulate bed is used to provide wall insulation and at the same time 

ensure radiation transmission to the PCM layer. Its physical properties, taken from 

manufacturer’ datasheet, are summarized in Table 4. Its energetic and optical transmissions 

were measured and compared with the manufacturer’s data (see Fig. 3 for the energetic 
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transmission). It was noted that the silica aerogel used in the TIM-PCM wall has a better 

transmission than it was expected (up to 20 % more). Optical transmission is not reported 

here since values are similar to energetic transmission ones, meaning that the silica aerogel 

is opaque to low energy radiation (infra-red, excepted for a short transparent band, Fricke 

and Tillotson, 1997) and translucent to high energy radiation (in the visible wave-band, Duer 

and Svendsen, 1998). The choice of this particular silica aerogel, highly insulating and 

translucent, was made to meet the TIM-PCM wall's insulation and transparency criteria. 

 

3.2. The 1 m² prototype 

To characterize thermal properties of the combined silica aerogels and phase change 

materials system, a small sized prototype (1 m²) was made. The prototype was placed on a 

heat exchanger test rig consisting of two vertical and parallel isothermal flat plates (see Fig. 

4, fully described in Ahmad et al., 2006). The prototype was placed inside the rig and 

temperature loads were applied on both surfaces. Thermal resistances of the prototype were 

calculated from flux measurements in steady-state. Its R-value varied from 1.57 to 1.68 

m²K.W-1 when the PCM was in solid state, and was 1.39 m²K.W-1 when the PCM was in 

liquid state.  A higher convection heat transfer is responsible for the lower resistance of the 

wall when the PCM is in liquid state. The U value of the TIM-PCM wall is 0.59 and 0.72 W.m-

1.K-1 respectively when the wall is in liquid and solid state. 

The MEGASPHERE test rig of the French Scientific and Technical Centre for Building 

Research (CSTB Grenoble, France) was used to characterize the optical properties (light 

reflection, transmission and absorption) of the prototype (Fig. 5). Energetic and optical 

transmissions τenh and τvnh were extrapolated from spectral transmission curves acquired for 

300 to 2500 nm wavelengths according to the EN410 norm. Reflections ρenh and ρvnh were 

directly measured by a wide angle sensor. 

From Table 5, it appears that the absorption of the prototype is high when the PCM is in 

liquid state. It means that the wall can easily store sensible heat, which may have a negative 

impact on the general ambiance within the building in summer by increasing its temperature. 

The light absorption is lower when the PCM is in solid state, meaning that only a part of 

incident solar radiation can be stored. This does not diminish the efficiency of the wall in 

warm Mediterranean climates such as of South France, as seen in the in situ results. 

 

3.3. The full-scale experiment 

 

The TIM-PCM wall was tested in situ in a full-scale building in Southern France. The 

building has a light frame architecture, is highly insulated (the R-value varies from 4.7 to 6.8 

m².K.W-1) and is composed of three rooms (Fig. 6). Both South facing rooms are identical 
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(same wall properties, 9.2 m² floor area) except for their South facing walls. The test room is 

equipped with 4.41 m² of TIM-PCM wall facing south while the reference room is equipped 

with a 7.15 m² high capacitance opaque wall. The high capacitance (reference) wall is made, 

from outside to inside, of concrete, glass wool thermal insulation, and plaster. The thermo-

physical properties of the reference wall are given in Table 6. The third room, facing North 

(18.8 m²), is used for data acquisition purpose. The building is left in free floating conditions 

without internal heat gains.  

A specific instrumentation is used to collect the necessary data to calculate the 

convection, conduction and radiation heat exchanges between the two south facing walls 

and their inside and outside environments. Surface temperatures are measured with PT100 

sensors (Prosensor Pt 100 DIN IEC 751 class B) of precision ±0.4°C. The sensors are  

protected from radiation by aluminum sheets. Temperatures inside the TIM-PCM wall (in the 

silica aerogel bed and within the bricks containing the PCM) are measured with PT100 

(Prosensor SLM 250 PVC).  

Total radiation on the horizontal plan is measured with a pyranometer (Pulsonic, 400-

1100 nm) of precision ±4% of the read value. Total radiation on the vertical plan is measured 

with a second pyranometer (Littoclime 13S374, 320-1060 nm) of precision ±7% of the value. 

Wind direction and velocity are measured by wind vane and anemometer (Pulsonic Aliza 

147) of precision ±0.5 m/s. Air temperature and relative humidity for the outside atmosphere 

and for both rooms are measured by all-in-one sensors (Prosensor HYGR0018 THAC, with 

added radiation protection) of precision ±0.4°C for temperature and ±3% of the read value for 

relative humidity. Two double range lux meters (Littoclime 13G134, 0-10 klux and 0-100 klux) 

of precision ±5% of the value, are used to measure the outside and inside global horizontal 

illuminance (light intensity) and to characterize the daylighting provided by the TIM-PCM wall. 

 To prevent breaking from thermal expansion of the PCM, the bricks were initially filled 

with the PCM at a temperature of 50°C and an air gap of 2cm was left on top of the liquid 

surface inside each brick. 

 

 

4. Results 
 
4.1. Meteorological data 

The TIM-PCM wall has been monitored from December to March and during the month of 

August. These periods cover most typical weathers of a year in Sophia-Antipolis, South 

France: cold and short days (December to February), shoulder season (March) and hot long 

days (August). A Summary of the meteorological data for the TIM-PCM wall experimentation 

is given in Table 7. All data were acquired with a 5 min time step. The maximum radiation 
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measured on a vertical plan is higher during the cold months, coinciding with the period when 

the heat gains through the wall are wanted. Trees in the vicinity of the test building causes 

shading on the studied walls, especially on early morning, midday and late afternoon in 

winter and shoulder seasons, which temporary limits solar gains. Three consecutive days of 

each mentioned periods were studied and the results are presented hereafter. 

 
 

4.2. Heat gains 

Heat gains provided by the TIM-PCM wall have a convective part and a long wave 

radiation part and are both derived from temperature measurements. The convective part is 

calculated from the mean surface temperature of the TIM-PCM wall and the air temperature 

inside the test room. The radiative part is calculated from the mean surface temperature of 

the TIM-PCM wall and the mean surface temperatures of every surface inside the test room. 

Fig. 7 presents the experimental results for the heat gains through the reference and the 

TIM-PCM walls and solar radiation for the four specific climate cases. 

 

For each study case, the heat flux entering the reference room through the standard 

opaque wall is almost constant and very low: -5 W.m-2 in winter and shoulder season and +5 

W.m-2 in summer. Regarding the TIM-PCM wall, a time lag of more than 4 hours is always 

observed. Its behavior through hours, days and seasons depends a lot on the following 

typical weather conditions. 

 

- Weather condition 1: Three consecutive cold days with high solar radiation (Fig. 7.1) 

Those days are characterized by a solar radiation on the south facing vertical plane of 

about 800W.m-2 at noon and an outdoor air temperature ranging from 7 to 18°C. Three 

dynamics for the heat release through the TIM-PCM wall are observed. The first one, starting 

at sunrise, corresponds to the heating and the melting of the solid PCM. Then a release of 

latent heat for about 14 hours (which is consistent with De Gracia et al., 2013) starting 

around 4pm occurs at an almost constant value of 50 W.m-2. When the PCM is totally 

solidified, the PCM is cooled down and sensible heat is released (steeply decreasing slopes). 

This case is appropriate for high TIM-PCM wall performances. The recorded indoor air 

temperature varied from 17 to 20°C, and was always higher than that of the reference room 

by 1°C to 3.5°C as shown on Fig. 8.1. 

 

- Weather condition 2: Three consecutive winter days with low solar radiation (Fig. 7.2) 

On those days, the maximum recorded amount of solar radiation on the south facing 

vertical plane is 130 W.m-2 and the outdoor temperature varies from 4 to 11°C. The PCM 
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always stays in solid state. There is almost no absorbed nor released heat and some heat 

losses less than 5 W.m-2 appear through the TIM-PCM wall at night. Here, the TIM-PCM wall 

does not bring any improvement when compared to the reference opaque wall. The recorded 

indoor air temperature varied from 11 to 14°C. 

 

- Weather condition 3: Three consecutive shoulder season days with high solar radiation 

(Fig. 7.3) 

Here, the maximum solar radiation is 750 W.m-2 and the outdoor air temperature varies 

from 8 to 25°C. The PCM is always in a melting or in a solidifying process. During nights and 

days, the entering flux is stabilized at an almost constant value of 50 W.m-2. This case 

represents the best case for the stabilization from the flux point of view but neither the fusion 

nor the crystallization can be fully achieved. Overheating of the room can be observed on 

some warm days. 

 

- Weather condition 4: Three consecutive summer days (Fig. 7.4) 

Those days are characterized by a solar radiation on the south facing vertical plane of 

about 500W.m-2 at noon and an outdoor air temperature ranging from 23 to 40°C. Even if the 

solar radiation on the vertical plan is lower in summer, air temperatures are too high to allow 

even partial solidification of the PCM at night. During the day, the PCM's temperature 

strongly increases resulting in a high sensible heat release. These heat gains generate 

overheating of the building, with indoor air temperature ranging from 35 to 40°C as shown on 

Fig. 8.2. These temperatures exceed that of the reference room by 2 to 6°C. Shading and 

night ventilation should be used in order to prevent this scenario. 

 

An efficiency parameter, calculated as the ratio between the solar radiation received by 

the TIM-PCM wall and the total heat gains provided by the wall can be assessed for each 

studied month. Mean effectiveness is about 35.2 % (36.8 % in December, 33.7 % in January, 

37.5 % in February and 32.9 % in March). For August, this parameter is of no interest since 

heat gains are not wanted. It should be noted that since the building is in free floating 

conditions, the inside air temperature variations impact directly this parameter.  

 

 

4.3. Daylighting 

One of the TIM-PCM wall functions is to provide visual comfort through daylighting. From 

the results, two cases are of interest. The first one occurs when the PCM is in solid state or 

in solid/liquid state (winter and shoulder seasons when the radiation on vertical plan is 
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higher). The second one occurs when the PCM is in liquid state (summer and shoulder 

seasons when the radiation on vertical plan is lower). 

Fig. 9 shows pictures of the daylighting provided by the TIM-PCM wall when the PCM is 

in solid state and when it is in liquid state. Inside the test room, the lux meter is situated one 

meter behind the middle of TIM-PCM wall and one meter above the floor level. When the 

PCM is in solid state, a maximum of 3 klx is provided by the wall, corresponding to a daylight 

factor of 3.4 %, as shown on Fig.10. According to European norm EN12464, such values are 

acceptable for various spaces such as warehouses, roofed parking lots, corridors, restrooms 

or waiting rooms. Since the solid PCM is almost opaque, most of the light comes from the 

translucent edges of glass bricks. When the PCM is in liquid state, the wall provides up to 5 

klx which corresponds to a daylight factor of 6.7 %. According to EN12464 norm, such values 

are acceptable for offices, classrooms, conference rooms, kitchens and certain workshops.  

Here, the light comes from both the liquid PCM and the glass bricks' edges. Artificial lighting 

is still necessary as back up to reach lighting requirements all day long, regardless of the 

fluctuation of natural light.   

 

 
5. Conclusions and outlooks 
 

Experimentations have been carried out to study the design of a TIM-PCM passive solar 

wall consisting of a glass facing the outside, a silica aerogel bed for thermal/sound insulation 

and light transmission, and a PCM in glass bricks for energy storage and release. The first 

step consisted in thermal and optical characterizations of the silica aerogels and phase 

change materials. The results have shown a good capability for these materials to reach the 

expected goals: the chosen silica aerogels are highly insulating and translucent and the PCM 

can successfully achieve its role of energy absorption, high capacity storage, constant heat 

restitution and daylighting when in liquid state. Then, a 1m² prototype was studied and the 

effectiveness of the wall in terms of heat absorption and translucency was confirmed. Finally, 

a full-scale experimentation carried out in the South of France has given a good 

understanding of its behavior.  

 

The TIM-PCM wall can contribute to the insulation, the heating and the daylighting of the 

test room. The U value of the TIM-PCM wall is 0.59 and 0.72 W.m-1.K-1 respectively when the 

wall is in liquid and solid state. The temperature difference between the outdoor and indoor 

air provided by the wall is up to 10°C in winter. The wall can provide a daylight factor up to 

6.7% to the inner environment. It was seen that the PCM absorbs and stores a lot of heat at 

a constant temperature. The release of latent heat, constant, is made with a time lag of about 
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4 hours. The translucent silica aerogel bed provides high insulation and daylighting. Its 

filtering role, letting high energy radiation going to the PCM and blocking low energy radiation 

from the PCM, contributes to the effectiveness of the wall. Five years after its construction, 

no deterioration of the PCM or the silica aerogels has been noted and the TIM-PCM wall is 

still acting the same way. Especially, a cycling of the PCM is still observed. 

 

By providing heat gains and daylighting, the TIM-PCM wall has a great potential for 

energy savings in buildings in winter and shoulder seasons for sunny climates. However, it 

was noted that when the solar radiation is very low, the wall does not bring any additional 

heat. In summer, the PCM does not cycle and stays in liquid state. Then the heat gains 

through the TIM-PCM wall have a negative impact on the indoor conditions, by rising the 

room's temperature. Night ventilation to evacuate extra heat and the use of shadings to limit 

solar heat gains could be used to limit such drawbacks. In the future, the TIM-PCM wall 

could also contribute to maintain the room temperature low in summer time, provided the 

cycling of the PCM is achieved. Further research should be devoted to that prospect. 
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Fig. 1. TIM-PCM wall layout 

 

 

 

Fig. 2. Selected fatty acids eutectic phase change enthalpy measurements using DSC 
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Fig. 3. Measured energetic transmission of a silica aerogel bed compared to manufacturer’s data 

 

 

 

Fig. 4. Small size prototype within the double heat exchanger test rig 
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Fig. 5. Prototype installation in the MEGASPHERE at CSTB Grenoble 

 

 

Fig. 6. Schematic presentation of the double zone test cell 
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Fig. 7. Heat gains through the reference and the TIM-PCM walls and solar radiation for the four specific climate conditions 

 

 

 

    

 

 

 

Fig. 8. Solar radiation and air temperatures for three days in December and August 
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Fig. 9. Daylight provided by the TIM-PCM wall with the PCM in solid state (left) and liquid state (right). The picture is taken 

from inside the test room 
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Fig. 10. Measurements of the daylighting outdoor and within the test room for 16 days in December 

and August 

 

Table 1. Thermo physical properties of the eutectic used (manufacturer’ data) 

Phase change temperature 21.3 °C 

Phase change enthalpy 152 kJ.kg-1 

Heat capacity (solid) 1670 J.kg-1.K-1 

Heat capacity (liquid) 2090 J.kg-1.K-1 

Density (solid) 884 kg.m-3  (at 35 °C) 

Density (liquid) 960 kg.m-3  (at 13 °C) 

Thermal conductivity (solid) 0.182 W.m-1.K-1  (at 5,4 °C) 

Thermal conductivity (liquid) 0.182 W.m-1.K-1  (at 39 °C) 

Max working temperature 70 °C 

 

 

Table 2. Thermal properties of the PCM, measured by DSC 

Fusion Solidification 

Enthalpy (kJ.kg-1) Begins at (°C) Max (°C) Enthalpy (kJ.kg-1) Begins at (°C) Max (°C) 

161.8 22.2 24.6 161.1 21.0 19.9 
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Table 3. PCM energetic and optical normal hemispheric transmission and reflexion 

  τnh (%) ρnh (%) 

Liquid state 
Energetic 90 5 

Optical 78 6 

Solid state 
Energetic ≈ 0 53 

Optical ≈ 0 56 

 

Table 4. Physical properties of the silica aerogel (manufacturer’ data) 

Particle size 0.5 to 4.0 mm 

Pore diameter 20 nm 

Porosity > 90 % 

Surface area 600 to 800 m².g-1 

Density 90 to 100 kg.m-3 

Thermal conductivity 0.018 W.m-1.K-1  (at 25 °C) 

 

Table 5. Energetic and optical transmission and reflection coefficients of the PCM-TIM 1 m² prototype 

 energetical (EN 410) optical (EN 410) 

τnh solid 6 % 8 % 

τnh liquid 31 % 35 % 

ρnh solid 62 % 72 % 

ρnh liquid 8 % 10 % 

 

Table 6. Thermo-physical properties of the reference wall 

Materials      
(from 

outside to 
inside) 

Width 
(m) 

Thermal 
conductivity 
(W.m-1.K-1) 

Specific 
heat  

(J.kg-1.K-1) 

Density       
(kg.m-3) 

Concrete 0.25 2.1 800 2400 
Glass wool 0.16 0.041 840 12 

Plaster 0.013 0.32 800 790 
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Table 7. Summary of the meteorological data for the TIM-PCM wall experimentation 

 

Mean daily 
radiation on 
vertical plan 

(W.m-2) 

Max radiation 
on vertical 

plan (W.m-2) 

Mean temp  
(°C) 

Max temp 
(°C) 

Min temp 
(°C) 

December 93.3 1000 9.5 20 1 

January 62 905 8.3 20 2.7 

February 72.8 952 9.6 23.6 0.3 

March 127.2 998 11.8 25.8 4.6 

August 116.3 568 26.7 40.9 18.9 
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