W. P. Kloosterman and R. H. Plasterk, The Diverse Functions of MicroRNAs in Animal Development and Disease, Developmental Cell, vol.11, issue.4, pp.441-450, 2006.
DOI : 10.1016/j.devcel.2006.09.009

I. Alvarez-garcia and E. A. Miska, MicroRNA functions in animal development and human disease, Development, vol.132, issue.21, pp.4653-4662, 2005.
DOI : 10.1242/dev.02073

R. Yi and E. Fuchs, MicroRNAs and their roles in mammalian stem cells, Journal of Cell Science, vol.124, issue.11, pp.1775-83, 2011.
DOI : 10.1242/jcs.069104

R. C. Lee, R. L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, issue.5, pp.843-854, 1993.
DOI : 10.1016/0092-8674(93)90529-Y

URL : https://hal.archives-ouvertes.fr/in2p3-00597159

E. Van-rooij and E. N. Olson, MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles, Nature Reviews Drug Discovery, vol.119, issue.11, pp.860-872, 2012.
DOI : 10.1038/nrd3864

J. Xu, MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features, Nucleic Acids Research, vol.39, issue.3, pp.825-836, 2011.
DOI : 10.1093/nar/gkq832

S. Hu, Novel MicroRNA Prosurvival Cocktail for Improving Engraftment and Function of Cardiac Progenitor Cell Transplantation, Circulation, vol.124, issue.11_suppl_1, pp.27-34, 2011.
DOI : 10.1161/CIRCULATIONAHA.111.017954

W. Zhu, Dissection of Protein Interactomics Highlights MicroRNA Synergy, PLoS ONE, vol.5, issue.5, p.63342, 2013.
DOI : 10.1371/journal.pone.0063342.s026

R. Shalgi, D. Lieber, and M. Oren, Global and Local Architecture of the Mammalian microRNA???Transcription Factor Regulatory Network, PLoS Computational Biology, vol.33, issue.7, p.131, 2007.
DOI : 10.1371/journal.pcbi.0030131.st008

Q. Jiang, Prioritization of disease microRNAs through a human phenome-microRNAome network, BMC Systems Biology, vol.4, issue.Suppl 1, p.2, 2010.
DOI : 10.1186/1752-0509-4-S1-S2

J. An, K. P. Choi, C. A. Wells, and Y. P. Chen, IDENTIFYING CO-REGULATING MICRORNA GROUPS, Journal of Bioinformatics and Computational Biology, vol.08, issue.01, pp.99-115, 2010.
DOI : 10.1142/S0219720010004574

I. S. Vlachos, DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways, Nucleic Acids Research, vol.40, issue.W1, pp.498-504, 2012.
DOI : 10.1093/nar/gks494

M. Maragkakis, Accurate microRNA target prediction correlates with protein repression levels, BMC Bioinformatics, vol.10, issue.1, p.295, 2009.
DOI : 10.1186/1471-2105-10-295

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets, Cell, vol.120, issue.1, pp.15-20, 2005.
DOI : 10.1016/j.cell.2004.12.035

J. Gómez, C. Martínez-a, A. González, and A. Rebollo, Dual role of Ras and Rho proteins: At the cutting edge of life and death, Immunology and Cell Biology, vol.16, issue.2, pp.125-134, 1998.
DOI : 10.1016/0952-7915(95)80106-5

D. S. Goldberg and F. P. Roth, Assessing experimentally derived interactions in a small world, Proc. Natl. Acad. Sci, pp.4372-4376, 2003.
DOI : 10.1073/pnas.0735871100

F. Bass and J. I. , Using networks to measure similarity between genes: association index selection, Nature Methods, vol.10, issue.12, pp.1169-76, 2013.
DOI : 10.1093/bioinformatics/btl492

G. Liu, L. Wong, and H. N. Chua, Complex discovery from weighted PPI networks, Bioinformatics, vol.25, issue.15, pp.1891-1897, 2009.
DOI : 10.1093/bioinformatics/btp311

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/25/15/1891

B. C. Van-wijk, C. J. Stam, and A. Daffertshofer, Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory, PLoS ONE, vol.11, issue.10, p.13701, 2010.
DOI : 10.1371/journal.pone.0013701.s006

N. Langer, A. Pedroni, and L. Jäncke, The Problem of Thresholding in Small-World Network Analysis, PLoS ONE, vol.54, issue.1, p.53199, 2013.
DOI : 10.1371/journal.pone.0053199.s003

A. Barabási and Z. Oltvai, Network biology: understanding the cell's functional organization, Nature Reviews Genetics, vol.5, issue.2, pp.101-114, 2004.
DOI : 10.1038/nrg1272

L. C. Freeman, Centrality in social networks conceptual clarification, Social Networks, vol.1, issue.3, pp.215-239, 1978.
DOI : 10.1016/0378-8733(78)90021-7

P. Erdo-?s and A. Rényi, On random graphs, Publ. Math. Debrecen, vol.6, pp.290-297, 1959.

A. Barabási and R. Albert, Emergence of Scaling in Random Networks, Science, vol.286, pp.509-512, 1999.

D. Bu, Topological structure analysis of the protein-protein interaction network in budding yeast, Nucleic Acids Research, vol.31, issue.9, pp.2443-2450, 2003.
DOI : 10.1093/nar/gkg340

R. Albert, Scale-free networks in cell biology, Journal of Cell Science, vol.118, issue.21, pp.4947-57, 2005.
DOI : 10.1242/jcs.02714

V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani, Detecting rich-club ordering in complex networks, Nature Physics, vol.65, issue.2, pp.110-115, 2006.
DOI : 10.1038/nphys209

M. Ashburner, Gene Ontology: tool for the unification of biology, Nature Genetics, vol.9, issue.1, pp.25-29, 2000.
DOI : 10.1038/75556

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. Ser. B, vol.57, pp.289-300, 1995.

A. Alexa, J. Rahnenführer, and T. Lengauer, Improved scoring of functional groups from gene expression data by decorrelating GO graph structure, Bioinformatics, vol.22, issue.13, pp.1600-1607, 2006.
DOI : 10.1093/bioinformatics/btl140

S. Y. Kim, Y. Lee, and Y. Bae, miR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting ?? subunit of protein kinase CKII in human colorectal cancer cells, Biochemical and Biophysical Research Communications, vol.429, issue.3-4, pp.173-179, 2012.
DOI : 10.1016/j.bbrc.2012.10.117

L. S. Nidadavolu, L. J. Niedernhofer, and S. A. Khan, Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress, Aging, vol.5, issue.6, pp.460-473, 2013.
DOI : 10.18632/aging.100571

C. L. Haga and D. G. Phinney, MicroRNAs in the Imprinted DLK1-DIO3 Region Repress the Epithelial-to-Mesenchymal Transition by Targeting the TWIST1 Protein Signaling Network, Journal of Biological Chemistry, vol.287, issue.51, pp.42695-42707, 2012.
DOI : 10.1074/jbc.M112.387761

A. Simion, MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2, Biochemical and Biophysical Research Communications, vol.391, issue.1, pp.293-298, 2010.
DOI : 10.1016/j.bbrc.2009.11.052

S. Chen, MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6, World Journal of Surgical Oncology, vol.11, issue.1, 2013.
DOI : 10.1146/annurev-pharmtox-010510-100517

P. Prévot, Let-7b and miR-495 Stimulate Differentiation and Prevent Metaplasia of Pancreatic Acinar Cells by Repressing HNF6, Gastroenterology, vol.145, issue.3, pp.668-678, 2013.
DOI : 10.1053/j.gastro.2013.05.016

X. Jiang, miR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia, Proceedings of the National Academy of Sciences, vol.109, issue.47, pp.19397-19402, 2012.
DOI : 10.1073/pnas.1217519109

L. Zhou, X. Qi, J. A. Potashkin, F. W. Abdul-karim, and G. Gorodeski, MicroRNAs miR-186 and miR-150 Down-regulate Expression of the Pro-apoptotic Purinergic P2X7 Receptor by Activation of Instability Sites at the 3'-Untranslated Region of the Gene That Decrease Steady-state Levels of the Transcript, Journal of Biological Chemistry, vol.283, issue.42, pp.28274-28286, 2008.
DOI : 10.1074/jbc.M802663200

C. Villa, and miR-590-3p in Neuronal Death: Genetics and Expression Analysis in Patients with Alzheimer Disease and Frontotemporal Lobar Degeneration, Rejuvenation Research, vol.14, issue.3, pp.275-281, 2011.
DOI : 10.1089/rej.2010.1123

A. Gong, MicroRNA-513 Regulates B7-H1 Translation and Is Involved in IFN-??-Induced B7-H1 Expression in Cholangiocytes, The Journal of Immunology, vol.182, issue.3, pp.1325-1333, 2009.
DOI : 10.4049/jimmunol.182.3.1325

S. Srikantan, Translational Control of TOP2A Influences Doxorubicin Efficacy, Molecular and Cellular Biology, vol.31, issue.18, pp.3790-3801, 2011.
DOI : 10.1128/MCB.05639-11

A. P. Somlyo and A. Somlyo, Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II, The Journal of Physiology, vol.516, issue.suppl., pp.177-185, 2000.
DOI : 10.1111/j.1469-7793.2000.t01-2-00177.x

A. Pitaval, A. Christ, A. Curtet, Q. Tseng, and M. Théry, Probing Ciliogenesis Using Micropatterned Substrates, Methods Enzymol, vol.525, pp.109-130, 2013.
DOI : 10.1016/B978-0-12-397944-5.00006-7

URL : https://hal.archives-ouvertes.fr/hal-00814549

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets, Cell, vol.120, issue.1, pp.15-20, 2005.
DOI : 10.1016/j.cell.2004.12.035

X. Wang and I. M. Naqa, Prediction of both conserved and nonconserved microRNA targets in animals, Bioinformatics, vol.24, issue.3, pp.325-357, 2008.
DOI : 10.1093/bioinformatics/btm595

J. S. Tsang, M. S. Ebert, and A. Van-oudenaarden, Genome-wide Dissection of MicroRNA Functions and Cotargeting Networks Using Gene Set Signatures, Molecular Cell, vol.38, issue.1, pp.140-153, 2010.
DOI : 10.1016/j.molcel.2010.03.007

M. Maragkakis, DIANA-microT web server: elucidating microRNA functions through target prediction, Nucleic Acids Research, vol.37, issue.Web Server, pp.273-276, 2009.
DOI : 10.1093/nar/gkp292

URL : http://doi.org/10.1093/nar/gkp292

M. Alshalalfa, G. Bader, T. A. Bismar, and R. Alhajj, Coordinate MicroRNA-Mediated Regulation of Protein Complexes in Prostate Cancer, PLoS ONE, vol.15, issue.6, p.84261, 2013.
DOI : 10.1371/journal.pone.0084261.s004

S. Hsu, miRTarBase: a database curates experimentally validated microRNA-target interactions, Nucleic Acids Research, vol.39, issue.Database, pp.163-172, 2011.
DOI : 10.1093/nar/gkq1107

F. Xiao, miRecords: an integrated resource for microRNA-target interactions, Nucleic Acids Research, vol.37, issue.Database, pp.105-115, 2009.
DOI : 10.1093/nar/gkn851

Z. Tao, miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma, The Journal of Experimental Medicine, vol.51, issue.4, pp.789-803, 2013.
DOI : 10.1200/JCO.2007.15.6521

G. Vetter, miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers, Oncogene, vol.385, issue.31, pp.4436-4448, 2010.
DOI : 10.1038/onc.2010.181

URL : https://hal.archives-ouvertes.fr/inserm-00492299

Y. Hoffman, D. R. Bublik, Y. Pilpel, and . Oren, miR-661 downregulates both Mdm2 and Mdm4 to activate p53, Cell Death and Differentiation, vol.57, issue.2, pp.302-311, 2014.
DOI : 10.1016/j.molcel.2011.11.022

M. Newman, Mixing patterns in networks, Physical Review E, vol.67, issue.2, p.26126, 2003.
DOI : 10.1103/PhysRevE.67.026126

G. Csardi and T. Nepusz, The igraph Software Package for Complex Network Research, InterJournal Complex Syst, vol.1695, p.1695, 2006.

R. Team, R: A Language and Environment for Statistical Computing Available at: http://www.r-project.org, p.26, 2012.

P. Shannon, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, vol.13, issue.11, pp.2498-2504, 2003.
DOI : 10.1101/gr.1239303

N. Blüthgen, Biological profiling of gene groups utilizing Gene Ontology, Genome Inform, vol.16, pp.106-115, 2005.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Research, vol.37, issue.1, pp.1-13, 2009.
DOI : 10.1093/nar/gkn923

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.1038/nmeth.2089

I. Ghorbel, N. Bertacchi, X. Gidrol, and V. Haguet, Parallelized contact imaging and automated analysis of cell migration dynamics. Paper presented at the 37th Int, Meet. Ger. Soc. Cell Biol, vol.71, 2014.

I. Ghorbel, F. Rossant, I. Bloch, and M. Paques, Modeling a parallelism constraint in active contours. Application to the segmentation of eye vessels and retinal layers. Paper presented at the 18th IEEE Int, Conf. Image Process, pp.445-448, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00683534

R. Edgar, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Research, vol.30, issue.1, pp.207-210, 2002.
DOI : 10.1093/nar/30.1.207

B. M. Bolstad, R. Irizarry, M. Astrand, and T. P. Speed, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, vol.19, issue.2, pp.185-193, 2003.
DOI : 10.1093/bioinformatics/19.2.185

B. M. Bolstad, Low-level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization Available at: http:// www.nature.com/scientificreports bmbolstad.com/Dissertation, p.17, 2004.

P. López-romero, M. A. González, S. Callejas, A. Dopazo, and R. A. Irizarry, Processing of Agilent microRNA array data, BMC Research Notes, vol.3, issue.1, p.18, 2010.
DOI : 10.1186/1756-0500-3-18

G. K. Smyth, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry et al., [limma: Linear Models for Microarray Data] Bioinforma, Comput. Biol. Solut. Using R Bioconductor, pp.397-420, 2005.

S. Pradervand, Impact of normalization on miRNA microarray expression profiling, RNA, vol.15, issue.3, pp.493-501, 2009.
DOI : 10.1261/rna.1295509