Compiling Image Processing Applications for Many-Core Accelerators
Pierre Guillou

To cite this version:

Pierre Guillou. Compiling Image Processing Applications for Many-Core Accelerators. Journées de seconde année de l’Ecole Doctorale, Jun 2015, Paris, France. <hal-01178938>

HAL Id: hal-01178938
https://hal-mines-paristech.archives-ouvertes.fr/hal-01178938
Submitted on 21 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Compiling Image Processing Applications for Many-Core Accelerators

Pierre Guillou – CRI MINES ParisTech, PSL Research University

Image Processing

image analysis: detect geometrical structures in an image
mathematical morphology: image analysis theory and technique based on lattice theory

Mathematical Morphology Base Operators

+ arithmetic operators
 + lUnary (point × parameter, 1 input image)
 + lBinary (point × point, 2 input images)
 + lLogical operators
 + lThreshold
 + lNeighbour selection: min/max/avg
 + reduction operators
 + lGlobal max/min/sum

Other operators:

− arithmetic operators
 + lUnary (pixel)
 + lBinary (pixel, 1 input image)
 + lUnary (pixel, 2 input images)
 + lLogical operators
 + lThreshold

Implement more complex algorithms: watershed, arrow, labelling, minima, ...

Improve data-parallelism to take better advantage of the current architecture

Other programming models:

− data-parallelization for compute-intensive operators
 + lGeneration of kernel-specific convolutions
 + lUnrolling of converging loops

Sigma-C

Sigma-C (FPGA/20 W)
MPPA-256 (Sigma-C/10 W)
Tesla C 2050 (OpenCL/240 W)
Quadro 600 (OpenCL/40 W)
SPoC (FPGA/25 W)

Future Work

− other programing models:
 + lOther alternative: OpenMP on compute clusters, communication library between clusters
 + lOpenCL via local memory pagination

− improve data-parallelism to take better advantage of the current architecture
 + lImplementation of more complex algorithms: watershed, arrow, labelling, minima, ...

Results: Execution Times and Energy Consumption (MPPA-256 = 1, lower is better)

Future Work

− Other programming models:
 + lOpenCL via local memory pagination

− Improve data-parallelism to take better advantage of the current architecture
 + lImplementation of more complex algorithms: watershed, arrow, labelling, minima, ...

References

Pierre Guillou, Fabien Codho, and François Irigoin.
Automatic Streamlining of Image Processing Applications.
The 27th International Workshop on Languages and Compilers for Parallel Computing (LCPC), 2014.