Skip to Main content Skip to Navigation
Journal articles

High-temperature anion and proton conduction in RE3NbO7 (RE = La, Gd, Y, Yb, Lu) compounds

Abstract : The oxide-ion and proton conduction properties of RE3NbO7 (RE = La, Gd, Y, Yb, Lu) compounds were investigated. For the bigger rare-earth cation, i.e. La3+, the compound crystallises in a weberite-type structure and the oxide-ion conductivity is low owing to the lack of intrinsic oxygen vacancies. Consequently, the resultant proton incorporation and conductivity in La3NbO7 are also low. For small rare-earth cations, i.e. from Gd3+ to Lu3+ and for RE = Y, materials adopt a fluorite-like structure confirmed from X-ray powder diffraction. In this latter case, materials include intrinsic oxygen vacancies leading to a higher oxygen conductivity. For these compounds, a proton incorporation takes place at low temperature under wet conditions giving rise to proton conductivity. Nevertheless, both oxygen and proton conductivities are low in these materials, which can be explained by the ordering of oxygen vacancies observed by Transmission Electron Microscopy.
Complete list of metadatas

https://hal-mines-paristech.archives-ouvertes.fr/hal-01180113
Contributor : Bibliothèque Umr7633 <>
Submitted on : Friday, July 24, 2015 - 11:46:21 AM
Last modification on : Thursday, September 24, 2020 - 6:30:04 PM

Identifiers

Citation

Anthony Chesnaud, Marc David Braida, Sonia Estradé, Francesca Peiro, A. Tarancon, et al.. High-temperature anion and proton conduction in RE3NbO7 (RE = La, Gd, Y, Yb, Lu) compounds. Journal of the European Ceramic Society, Elsevier, 2015, 35, pp.3051-3061. ⟨10.1016/j.jeurceramsoc.2015.04.014⟩. ⟨hal-01180113⟩

Share

Metrics

Record views

390