Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Field theory and diffusion creep predictions in polycrystalline aggregates

Abstract : In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01180120
Contributeur : Bibliothèque Umr7633 <>
Soumis le : vendredi 24 juillet 2015 - 11:57:56
Dernière modification le : jeudi 24 septembre 2020 - 18:30:04

Lien texte intégral

Identifiants

Citation

Aurélien Villani, Esteban P Busso, Samuel Forest. Field theory and diffusion creep predictions in polycrystalline aggregates. Modelling and Simulation in Materials Science and Engineering, IOP Publishing, 2015, 23, 055006, 24 p. ⟨10.1088/0965-0393/23/5/055006⟩. ⟨hal-01180120⟩

Partager

Métriques

Consultations de la notice

247