Ensemble forecast of solar radiation using TIGGE weather forecasts and HelioClim database - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Solar Energy Année : 2015

Ensemble forecast of solar radiation using TIGGE weather forecasts and HelioClim database

(1, 2) , (2) , (3) , (4) , (5)
1
2
3
4
5

Résumé

Medium-range forecasts (one day to two weeks) of solar radiation are commonly assessed with a single forecast at a given location. In this paper, we forecast maps of surface solar irradiance, using ensembles of forecasts from the THORPEX Interactive Grand Global Ensemble (TIGGE) with a 6-h timestep. We compare our forecasts with observations derived from MeteoSat Second Generation (MSG) and provided by the HelioClim-3 database as gridded observations over metropolitan France. First, we study the ensembles from six meteorological centers. Second, we use sequential aggregation to linearly combine all the forecasts with weights that vary in space and time. Sequential aggregation updates the weights before any forecast, using available observations. We use the global numerical weather prediction from the European Center for Medium-range Weather Forecasts (ECMWF) as a reference forecast. The issue of spatial resolution is discussed because the low resolution forecasts from TIGGE are compared to high resolution irradiance estimated from MSG data. We found that the TIGGE ensembles are under-dispersed but rather different from one to another. Aggregation decreases the forecast error by 20%, and produces a more realistic spatial pattern of predicted irradiance.
Fichier principal
Vignette du fichier
Thorey_Solar Energy-2015.pdf (773.49 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01184650 , version 1 (17-08-2015)

Identifiants

Citer

Jean Thorey, Vivien Mallet, Christophe Chaussin, Laurent Descamps, Philippe Blanc. Ensemble forecast of solar radiation using TIGGE weather forecasts and HelioClim database. Solar Energy, 2015, 120, pp.232-243. ⟨10.1016/j.solener.2015.06.049⟩. ⟨hal-01184650⟩
895 Consultations
741 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More