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Foreword 
The first version of this handbook was developed in response to a growing need by the solar 
energy industry for a single document addressing the key aspects of solar resource 
characterization. The solar energy industry has developed rapidly throughout the last few years, 
and there have been significant enhancements in the body of knowledge in the areas of solar 
resource assessment and forecasting. Thus, this second version of the handbook was developed 
from the need to update and enhance the initial version and present the state of the art in a 
condensed form for all of its users. 

Although the first version of this handbook was developed by only researchers from the National 
Renewable Energy Laboratory, this version has additional contributions from an international 
group of experts primarily from the knowledge that has been gained through participation in the 
International Energy Agency’s Solar Heating and Cooling Programme Task 36 and Task 46.  

As in the first version, this material was assembled by scientists and engineers who have many 
decades of combined experience in atmospheric science, radiometry, meteorological data 
processing, and renewable energy technology development. 

Readers are encouraged to provide feedback to the authors for future revisions and an expansion 
of the handbook’s scope and content. 
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Preface 
As the world looks for low-carbon sources of energy, solar power stands out as the single most 
abundant energy resource on Earth. Harnessing this energy is the challenge for this century. 
Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms 
of energy applications using sunlight. These solar energy systems use different technologies, 
collect different fractions of the solar resource, and have different siting requirements and 
production capabilities. Reliable information about the solar resource is required for every solar 
energy application. This holds true for small installations on a rooftop as well as for large solar 
power plants. However, solar resource information is of particular interest for large installations, 
because they require a substantial investment, sometimes exceeding $1 billion in construction 
costs. Before such a project is undertaken, the best possible information about the quality and 
reliability of the fuel source must be made available. That is, project developers need to have 
reliable data about the solar resource available at specific locations, including historic trends with 
seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual 
performance of a proposed power plant. Without this data, an accurate financial analysis is not 
possible. 

In September 2008, the U.S. Department of Energy (DOE) hosted a meeting of prominent CSP 
developers and stakeholders. One purpose was to identify areas in which the DOE’s CSP 
program should focus its efforts to help the industry develop and deploy projects. At the top of 
the priority list was the need to provide high-quality solar resource data and recommend to 
industry the best way to use these data for site selection and estimating power plant performance. 
The direct result was the National Renewable Energy Laboratory’s (NREL’s) first edition of 
Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar 
Resource Data. The content was based on the experiences of scientists and engineers from 
industry, academia, and DOE for identifying the sources, quality, and methods for applying solar 
and meteorological data to CSP projects. 

The International Energy Agency’s (IEA’s) Solar Heating and Cooling Programme (SHC) Task 
36 on solar resource knowledge management and Task 46 on solar resource assessment and 
forecasting brought together the world’s foremost experts in solar energy meteorology. This 
group of experts felt the need to create a collective document to disseminate the knowledge that 
was being developed through these tasks. It was decided that combining the efforts of the experts 
involved in the IEA task to build on the information in NREL’s first version of this handbook 
would provide the best use of resources and deliver a handbook of outstanding quality to users. It 
was also decided that additional solar technologies, such as photovoltaics, would be incorporated 
along with additional aspects of energy meteorology that have become extremely important, such 
as solar forecasting.  

This expanded version of the handbook presents detailed information about solar resource data 
and the resulting data products needed for each stage of a solar energy project, from initial site 
selection to systems operations. It also contains a summary of solar forecasting and its 
development throughout the last few years. This handbook is not meant to be read from cover to 
cover, but to be used as a reference during each project stage. The figure below lists these stages 
and shows which chapters contain information about the corresponding available data and 
resulting products. 
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DOE’s Solar Energy Technology Office, project developers, engineering procurement 
construction firms, utility companies, system operators, energy suppliers, financial investors, and 
others involved in solar energy systems planning and development will find this handbook to be 
a valuable resource for the collection and interpretation of solar resource data. 

Further, this report serves as the final deliverable for the IEA SHC Task 36 on solar resource 
knowledge management, which ended in June 2011, and as an interim deliverable for the 
ongoing Task 46 on solar resource assessment and forecasting. As stated above, this report 
contains research findings from a number of experts from around the world who participated in 
Task 36 and are currently participating in Task 46. Future updates to this report are expected in 
June 2016 as the final deliverable to Task 46. 
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1 Why Solar Resource Data Are Important to Solar 
Power 

Sunlight is the fuel for all solar energy generation technologies. Like any generation source, 
knowledge of the quality and future reliability of the fuel is essential to accurate analyses of 
system performance and the financial viability of a project. With solar energy systems, the 
variability of the supply of sunlight probably represents the single greatest uncertainty in a solar 
power plant’s predicted performance. Solar resource data and modeling factor into three 
elements of a solar project’s life: 

• Site selection 

• Predicted annual power plant output 

• Temporal performance and operating strategy. 

The first two items are interrelated. Site selection includes numerous factors, but a top priority is 
a good solar resource. For site selection, data from individual years and a representative annual 
solar resource are required to make comparisons to alternative sites and estimate power plant 
output. Because site selection is always based on historical solar resource data, and because 
changes in weather patterns occur from year to year, more years of data are better for 
determining a representative annual data set. Deriving a typical meteorological year (TMY) is 
described in Chapter 5. TMY data are used to compare the relative solar resource at alternative 
sites and to estimate the probable annual performance of a proposed solar power plant. Data from 
individual years are required to assess the annual variability that can be expected for a proposed 
location. 

In the absence of long-term ground data, development of TMY data for large regions requires the 
use of models that rely mostly on satellite imagery. In regional terms, identifying prime solar 
resource areas is fairly simple. The southwestern United States, for example, has broad areas of 
excellent solar resource. However, narrowing down the data to a specific few square kilometers 
of land requires considering local impacts; although satellite data are very useful in mapping 
large regions, individual sites should be vetted by using ground-monitoring stations. Local 
measurements can be compared to same-day satellite data to test for bias in the satellite model 
results. Any correction in the satellite model can then be applied to the historical data sets. 
Correcting any bias in the satellite data will allow the modeler to more accurately apply multiple 
years of satellite data to generate an improved TMY data set for a site. 

After a plant is built, resource data are immediately required to complete acceptance testing. The 
owner and financiers will insist on verifying that the power plant output meets its design 
specifications for a specific solar input. Often the acceptance tests will be for a short duration, 
perhaps a few days, but the owners will want to extrapolate the results to estimate annual 
performance. Annual performance estimates can be improved by comparing locally measured 
ground data to the satellite-derived data for the same time interval.  

Accurate resource data will remain essential to a power plant’s efficient operation throughout its 
service life. Comparison of plant output as a function of solar radiation resource is one global 
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indicator of power plant performance. A drop in overall efficiency implies a degradation of one 
or more power plant components and indicates that maintenance is required.  

Last, the realm of resource forecasting is becoming more important for plant dispatch as higher 
penetrations of solar power are planned for the electric grid. An accurate forecast can increase 
power plant profits by optimizing energy dispatch into the time periods of greatest value. 
Although not explicitly covered in this handbook, forecasting requires the same principles 
described here for historical resource assessment: proper use of satellite- and ground-based data 
sources and models. 
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2 Overview of Solar Radiation Resource Concepts 
2.1 Introduction 
Describing the relevant concepts and applying a consistent terminology are important to the 
usefulness of any handbook. This chapter uses a standard palette of terms to provide an overview 
of the key characteristics of solar radiation, the fuel source for solar technologies. 

Beginning with the sun as the source, we present an overview of the effects of the Earth’s orbit 
and atmosphere on the types and amounts of solar radiation available for energy conversion. An 
introduction to the concepts of measuring and modeling solar radiation is intended to prepare the 
reader for the more in-depth treatment in Chapter 3 and Chapter 4. The overview concludes with 
an important discussion of the estimated uncertainties associated with solar resource data based 
on measurements and modeling methods used to produce the data. 

2.2 Properties of ETR 
Any object with a temperature above absolute zero emits radiation. With an effective 
temperature of approximately 6,000 K, the sun emits radiation over a wide range of wavelengths, 
the solar spectral power distribution, or solar spectrum, commonly labeled from high-energy 
shorter wavelengths to lower energy longer wavelengths as gamma ray, x-ray, ultraviolet, 
visible, infrared, and radio waves. These are called spectral regions (Figure 2-1). Most (97%) 
solar radiation is in the wavelength range of 290 nm to 3,000 nm. Future references to broadband 
solar radiation refer to this spectral range. 

Various different extraterrestrial spectral power distributions were derived based on ground 
measurements, extraterrestrial measurements, and physical models. Some of these spectra 
deviate strongly from currently accepted standard extraterrestrial spectra as presented in the 
American Society for Testing and Materials (ASTM) Standard E490 (2006).  

Figure 2.1 shows the terrestrial and extraterrestrial spectrum of direct normal irradiance (DNI). 
Standardized terrestrial spectra for DNI and global hemispherical irradiance on a 37-degree 
south-facing tilted irradiance are presented in ASTM G173-03 (2006). 
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Figure 2-1. The atmosphere affects the amount and distribution of solar radiation reaching the 

ground. Image from NREL 

 
Before continuing our discussion of solar radiation, it is important to understand a few basic 
radiometric terms. Radiant energy, flux, power, and other concepts used in this handbook are 
summarized in Table 2-1. 

Table 2-1. Radiometric Terminology and Units 

Quantity Symbol SI Unit Abbreviation Description 

Radiant 
energy 

Q joule J Energy 

Radiant 
flux 

Φ watt W Radiant energy per unit of 
time 

  Radiant 
intensity 

I watt per steradian W/sr Power per unit of solar 
angle 

Radiant 
emittance 

M watt per square 
meter 

W/m2 Power emitted from a 
surface 

Radiance L watt per steradian 
per square meter 

W/sr/m2 Power per unit solid angle 
per unit of projected source 

 Irradiance E, I watt per square 
meter 

W/m2 Power incident on a surface 

Spectral 
irradiance 

Eλ watt per square 
meter per nanometer 

W/m2/nm Power incident on a surface 
per wavelength 

 
The total radiant power from the sun is remarkably constant. In fact, the solar output (radiant 
emittance) has commonly been called the solar constant, but the currently accepted term is total 
solar irradiance (TSI), to account for the actual variability with time. There are cycles in the 
number of sunspots (cooler, dark areas on the sun) and general solar activity of approximately 11 
years. Figure 2-2 shows a composite of space-based measurements of the TSI, normalized to 1 
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astronomical unit (AU), the average Earth-sun distance, since 1975, encompassing the last three 
11-year sunspot cycles (De Toma et al. 2004). 

 

 
Figure 2-2. Three solar cycles show the variations of TSI in composite measurements from 

satellite-based radiometers (color coded) and model results produced by the World Radiation 
Center (WRC).1 Image used by permission of the Physical Meteorological Observatory in Davos, 

Switzerland 

 
The measured variation in TSI resulting from the sunspot cycle is ± 0.2%, only twice the 
precision (repeatability, not total absolute accuracy, which is approximately ± 0.5%) of the most 
accurate radiometers measuring the irradiance in space. There is, however, some large variability 
in a few spectral regions, especially the ultraviolet (wavelengths less than 400 nm), caused by 
solar activity. 

The amount of radiation exchanged between two objects is affected by their separation distance. 
The Earth’s elliptical orbit (eccentricity 0.0167) brings us closest to the sun in January and 
farthest from the sun in July. This annual variation results in variation of the Earth’s solar 
irradiance of ± 3%. The average Earth-sun distance is 149,598,106 km (92,955,953 miles), or 1 
AU. Figure 2-3 shows the Earth’s orbit in relation to the northern hemisphere’s seasons, caused 
by the average 23.5-degree tilt of the Earth’s rotational axis with respect to the plane of the orbit. 
The solar irradiance available at the top of atmosphere (TOA) is called the extraterrestrial 
radiation (ETR). ETR (see Equation 2-1) is the power per unit area, or flux density in watts per 
square meter (W/m2), radiated from the sun and available at the TOA. ETR varies with the Earth-
sun distance (r) and annual mean distance (r0): 

 ETR TSI (r0/r)2 (2-1) 

                                                 
1 See http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant. 

http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
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Figure 2-3. Schematic of the Earth’s orbit. Image from Wikipedia 

 
As measured by multiple satellites (with individual corrections and adjustments applied) 
throughout the past 30 years, the TSI is 1,366.1 ± 7 W/m2 at 1 AU. According to astronomical 
computations, such as those made by NREL’s solar position software, the variation in the Earth-
sun distance causes the ETR to vary from approximately 1,415 W/m2 around January 3 to 
approximately 1,321 W/m2 around July 4. 

From the top of the atmosphere, the sun appears as a very bright disk with an approximate 
angular diameter of 0.5 degrees (the actual diameter varies by a small amount as the Earth-sun 
distance varies) surrounded by a completely black sky (apart from the light coming from stars 
and planets). This angle can be determined from the distance between the Earth and the sun and 
the sun’s visible diameter. A point at the top of the Earth’s atmosphere intercepts a cone of light 
from the hemisphere of the sun facing the Earth with a total angle of 0.5 degrees at the apex and 
a divergence angle from the center of the disk of 0.266 degree (half the apex angle, yearly 
average). Because the divergence angle is very small, the rays of light from the sun are nearly 
parallel; these are called the solar beam. In the following, we will discuss the interaction of the 
solar beam with the terrestrial atmosphere. 

2.3 Solar Radiation and the Earth’s Atmosphere 
The Earth’s atmosphere is a continuously variable filter for the solar ETR as it reaches the 
surface. Figure 2-4 illustrates the “typical” absorption of solar radiation by ozone, oxygen, water 
vapor, and carbon dioxide. The amount of atmosphere the solar photons must traverse, also 
called the atmospheric path length or air mass (AM), depends on the relative position of the 
observer with respect to the sun’s position in the sky (Figure 2-4). By convention, air mass one 
(AM1) is defined as the amount of atmospheric path length observed when the sun is directly 
overhead from a location at sea level. AM is geometrically related to the solar zenith angle 
(SZA) as AM = secant of SZA, or 1/Cos(SZA). Because SZA is the complement of the solar 
elevation angle, AM is also equal to 1/Sin (solar elevation angle). Air mass two (AM2) occurs 
when the SZA is 60 degrees, and it has twice the path length of AM1. Weather systems, 
specifically clouds and storm systems, are the major elements that modify the ETR on its way to 
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the surface or to a solar collector. The cloudless atmosphere also contains gaseous molecules, 
dust, aerosols, particulates, etc., which reduce the ETR as it moves through the atmosphere. This 
reduction is caused by absorption (capturing the radiation) and scattering (essentially a complex 
sort of reflection). 

 
Figure 2-4. Scattering of the direct-beam photons from the sun by the atmosphere produces 
diffuse radiation that varies with AM (Marion, Riordan, and Renné 1992). Image from NREL 

 
Absorption converts part of the incoming solar radiation to heat and raises the temperature of the 
absorber. The longer the path length through the atmosphere, the more radiation is absorbed and 
scattered. Scattering redistributes the radiation in the hemisphere of the sky dome above the 
observer, including reflecting part of the radiation back into space. The probability of 
scattering—and hence of geometric and spatial redistribution of the solar radiation—increases as 
the path (AM) from the TOA to the ground increases. 

Part of the radiation that reaches the Earth’s surface will be reflected back into the atmosphere. 
The actual geometry and flux density of the reflected and scattered radiation depend on the 
reflectivity and physical properties of the ground and constituents in the atmosphere, especially 
clouds. 

Based on these interactions among the radiation and the atmosphere, the terrestrial solar radiation 
is divided into two components: direct beam radiation refers to solar photons that reach the 
surface without being scattered or absorbed; diffuse radiation refers to such photons that reach 
the observer after one or more interactions with the atmosphere. These definitions and their 
usage for solar energy will be discussed in detail in the following section on DNI. 

Research into the properties of atmospheric constituents, ways to estimate them, and their 
influence on the magnitude of solar radiation in the atmosphere at various levels and at the 
ground continues and is of great importance to those who measure and model solar radiation 
fluxes (see Chapters 3 and 4). 
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2.3.1 Relative Motions of the Earth and Sun 
The amount of solar radiation available at the TOA is a function of the TSI and the Earth-sun 
distance at the time of interest. The slightly elliptical orbit of the Earth around the sun was 
briefly described above and shown in Figure 2-3. The Earth rotates around an axis through the 
geographical north and south poles, inclined at an average angle of approximately 23.5 degrees 
to the plane of the Earth’s orbit. The resulting yearly variation in the solar input results in the 
climate and weather at each location. The axial tilt of the Earth’s rotation also results in daily 
variations in the solar geometry throughout the course of a year. 

In the northern hemisphere, at latitudes above the Tropic of Cancer (23.5° N) near midday, the 
sun is low on the horizon during the winter and high in the sky during the summer. Summer days 
are longer as the sun rises north of east and sets north of west. Winter days are shorter as the sun 
rises south of east and sets south of west. Similar transitions take place in the southern 
hemisphere. All these changes result in changing geometry of the solar position in the sky with 
respect to a specific location. (See Figure 2-5 generated for Denver, Colorado, by a program 
available from the University of Oregon2.) These variations are significant and are accounted for 
in analyzing and modeling solar radiation components using solar position calculations such as 
NREL’s Solar Position Algorithm.3 

2.4 Solar Resources: The Solar Components 
Radiation can be transmitted, absorbed, or scattered by an intervening medium in varying 
amounts depending on the wavelength (see Figure 2-1). Complex interactions of the Earth’s 
atmosphere with solar radiation result in three fundamental broadband components of interest to 
solar energy conversion technologies: 

• DNI—Solar (beam) radiation available (of particular interest to concentrating solar 
power, or CSP, and concentrating photovoltaic, or CPV, technology) 

• Diffuse horizontal irradiance (DHI)—Scattered solar radiation from the sky dome (not 
including DNI) 

• Global horizontal irradiance (GHI)—Geometric sum of the DNI and DHI (total 
hemispheric irradiance). 

These basic solar components are reacted to the SZA by the expression  

 GHI = DNI × Cos (SZA) + DHI (2-2) 

These components are shown in Figure 2-6. 

                                                 
2 See http://solardat.uoregon.edu/SunChartProgram.html.  
3 See http://www.nrel.gov/midc/spa/.  

http://solardat.uoregon.edu/SunChartProgram.html
http://www.nrel.gov/midc/spa/
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Figure 2-5. Apparent sun path variations during a year for Denver, Colorado. Image from the 

Universitity of Oregon Solar Radiation Monitoring Laboratory 

 

 
Figure 2-6. Solar radiation components resulting from interactions with the atmosphere. Image by 

Al Hicks, NREL  

 



10 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

2.4.1 DNI and Circumsolar Irradiance 
The definition of DNI is the irradiance on a surface perpendicular to the vector from the observer 
to the center of the sun caused by radiation that did not interact with the atmosphere (WMO 
2008). This strict definition is useful for atmospheric physics and radiative transfer models, but it 
results in a complication for ground observations: It is not possible to measure whether or not a 
photon was scattered if it reaches the observer from the direction in which the solar disk is seen. 
Therefore, DNI is interpreted differently in the world of solar energy. Direct solar radiation is 
understood as the “radiation received from a small solid angle centered on the sun’s disk” (ISO 
1990). The size of this “small solid angle” for DNI measurements is recommended to be  
5 ∙ 10-³ sr (corresponding to and approximate 2.5-degree half angle) (WMO 2008). This 
recommendation is approximately 10 times larger than the radius of the solar disk itself (yearly 
average 0.266 degree). This is because instruments for DNI measurements (pyrheliometers) have 
to track or follow the sun throughout its path of motion in the sky, and small tracking errors have 
to be expected. The large field of view (FOV) of pyrheliometers reduces the effect of such 
tracking errors. 

To understand the definition of DNI and how it is measurement by pyrheliometers in more detail, 
the role of circumsolar radiation has to be discussed. Because of forward scattering of direct 
sunlight in the atmosphere, the circumsolar region closely surrounding the solar disk (solar 
aureole) looks very bright. The radiation coming from this region is called circumsolar radiation. 
For the typical FOV of modern pyrheliometers (2.5 degrees), circumsolar radiation contributes a 
variable amount, depending on atmospheric conditions, to the DNI measurement. This 
contribution can be quantified if the radiance distribution within the solar disk angle and the 
circumsolar region and the so-called penumbra function of the pyrheliometer is known. Both of 
these bits of information will be explained in the following. Such an explanation is of particular 
interest for concentrating solar technologies (CSP or CPV), because the contribution of 
circumsolar radiation to the yield of most concentrating power plants is less than the contribution 
from the DNI measurement. This effect has to be considered in the performance analysis of 
concentrating collectors to avoid overestimating the intercepted irradiance. 

The first bit of information that is required to determine the effect of circumsolar radiation on the 
pyrheliometer is the solar and circumsolar radiance distribution. This distribution usually shows 
good radial symmetry around the center of the sun. Thus, it can be accurately described as a 
function of the angular distance from the center of the sun. This solar radiance profile, 
normalized to unity in the center of the sun, is called sunshape. The sunshape not varies with 
time and sky conditions, and the average sunshape determined for a specific site can also be very 
different from that of another location. 

The solar radiance profile has been of interest for scientists of various specializations already for 
some centuries. In the middle of the 18th century, Bouguer carried out measurements of the disk 
radiance profile and found that the radiance decreases with increasing angular distance from the 
center of the sun (Mueller 1897). Between 1920 and 1955, the Smithsonian Institution measured 
the circumsolar irradiance coming from an annular region concentrically positioned around the 
sun under the lead of Dr. C.G. Abbot (Watt 1980).  

Measurements of the solar radiance profile including the solar disk and the circumsolar region 
have been carried out by Lawrence Berkeley National Laboratory (LBNL) (Grether, Nelson, and 
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Wahlig 1975). The measurements from LBNL are of special importance for solar energy, 
because nearly 180,000 measurements were collected from 11 different sites in the United States 
between 1976 and 1981 and were later digitally published in the LBNL reduced data base 
(Noring, Grether, and Hunt 1991). The instrument had a small circular aperture and measured the 
radiance coming from nearly point-like regions around and inside the solar disk. Other groups 
used analog photographic techniques to determine the solar radiance profile (for example, 
Deepak and Adams [1983] and Sandia National Laboratories [see Watt {1980}]). In the 1990s, 
charge-coupled device cameras were used by the Paul Scherrer Institute and the German 
Aerospace Center (DLR) (Schubnell 1992), an approach that was followed later by DLR until 
the end of the last century (Neumann et al. 1998). Recently, a method based on two commercial 
instruments (Visidyne’s sun and aureole measurement system, Sytem Advisor Model (SAM), 
and a CIMEL sun photometer) was presented (Wilbert, Pitz-Paal, and Jaus 2013). Other 
instruments that measure the circumsolar irradiance are documented in Wilbert, Pitz-Paal, and 
Jaus (2012); Wilbert, Pitz-Paal, and Jaus (2013); Kalapatapu et al. (2012); and Wilbert (2014). 

Figure 2-7 shows sunshapes derived from LBNL and the first DLR sunshape measurement 
system. Averages throughout several measurements are shown. A proposed “standard solar scan” 
was determined by Rabl and Bendt (1982) as an average from LBNL measurements. The term 
“standard” should not be misunderstood. Here it refers to an average of many sunshapes that 
deviate strongly from the so-called “standard solar scan.” “DLR mean” shows an average 
sunshape derived from DLR’s measurements as presented under this name in (Neumann et al. 
2002). The other sunshapes are averages of sunshapes within different intervals of CSRs 
(circumsolar ratio) from (Neumann et al. 2002). They are named corresponding to the CSR 
interval that was used for the averaging. The CSR can be used to characterize the sunshape to 
some extent (Buie and Monger 2001). It is defined as  

 CSR(adisk, alim) = CSNI(adisk, alim) / (CSNI(adisk, alim) + DNI(adisk)) (2-2) 

Here, CSNI(adisk, alim) is the circumsolar normal irradiance observed in the circumsolar region 
between the angular distances adisk and alim from the center of the sun. adisk is the solar disk 
angle (half angle), and DNI(adisk) is the disk irradiance (the normal irradiance caused by the 
radiation observed within the angular distance adisk around the sun’s center, independent of 
whether or not the photons were scattered). 

The extent of the circumsolar region cannot be defined in a universally valid way. This is 
because different pyrheliometers and different concentrating collectors use radiation up to 
individual angular distances alim from the center of the sun. Hence, alim has to be selected 
depending on the investigated technology. For example, alim = 3.2° is used for the CSR in the 
LBNL reduced database (Noring et al. 1991), and ≥ 4° would be necessary to allow the complete 
description of a pyrheliometer measurement following World Meteorological Organization 
(WMO) recommendations (see next paragraph on penumbra functions).  

For the physically exact interpretation of the CSR, adisk is calculated as a function of time using 
the visible disk radius and the time dependent distance between the sun and the Earth (Wilbert, 
Pitz-Paal, and Jaus 2013). Depending on the authors and the measurement systems, other angles 
are used for adisk. In Neumann et al. (2002), adisk=4.65 milliradians (mrad) is used accepting the 
error caused by neglecting the yearly variation of the solar disk angle due to the Earth’s elliptic 
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path around the sun. For the LBNL data, a slightly higher angle than the average solar disk angle 
is used for all measurements (Watt 1980) to avoid instrumental errors that caused an 
overestimation of the radiance close to the solar disk angle. 

For CPV applications also, the spectral variation of the CSR has to be considered. Spectral CSR 
values for different wavelengths deviate strongly from each other and also from the 
corresponding broadband CSRs (Evans et al. 1980). Average ratios of broadband CSR to spectral 
CSR between 0.7 and 1.4 have been found for the visible and near-infrared spectrum with the 
LBNL instrument (for measurements around noon). The spectral dependence of these average 
ratios found for low CSR levels is opposite to that for high CSRs. Also, the scatter of these ratios 
for each of the wavelengths investigated by LBNL was quite high (Evans et al. 1980). Similar 
ratios were found in an analysis based on sunshapes predicted by the three-dimensional Monte 
Carlo radiative transfer model MYSTIC (Mayer 2009) that is part of the libRadtran package 
(Mayer and Kylling 2005) and SMARTS2 (Gueymard 2001) in Wilbert, Pitz-Paal, and Jaus 
(2013). Further, the broadband CSR and especially the spectral CSR depend on the AM. 

 
Figure 2-7. Different sunshapes from Rabl and Bendt (1982) and Neumann et al. (2002). The 

average solar disk angle and the recommended FOV of a pyrheliometer (WMO 2008) are shown as 
vertical lines. Image from Stefan Wilbert, DLR 

 
The other bit of information to determine the effect of the circumsolar radiation on the DNI 
measurement is the penumbra function of the pyrheliometer. For pyrheliometers, the geometrical 
penumbra function evaluated at an angular distance a a from the center of the sun Ppyr(a) is 
defined as the fraction of parallel rays incident on the pyrheliometers aperture at a that reaches 
the sensor element. It can be calculated using the distance between the aperture window and the 
sensor element and their respective sizes (Pastiels 1959). Penumbra functions are defined 
equivalently to angular acceptance functions for CSP or CPV plants, for example, as used in 
Rabl and Bendt (1982). 
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All radiation is detected for angular distances between 0 degrees and the slope angle aslope. For 
angular distances greater than the limit angle alim, no radiation is detected by the instrument. The 
opening half angle (also FOV) is defined as the angle between the optical axis of the instrument 
and the vector from the center of the sensor element to the border of the instrument’s entrance 
aperture. The opening angle is the average of the slope and the limit angle. WMO recommends 
that pyrheliometers should have an FOV of 2.5 degrees, a slope angle of 1 degree (WMO 2008), 
and it follows that the limit angle should be 4 degrees (all angles given as half angles). 

Taking into account effects such as the spatial inhomogeneity of the sensor in addition to the 
geometry, the effective angular acceptance function is obtained (Major 1994). 

The radiation accepted by a pyrheliometer DNIexp for a known radially symmetric solar radiance 
profile Lsolar can be calculated as: 

 ∫⋅=
iml
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a
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0
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In this handbook, we understand DNI as DNIexp following the typical usage in solar energy. 
Circumsolar radiation data are available from the LBNL Reduced Data Base.4 A detailed 
discussion of circumsolar radiation can be found in Blanc et al. 2014). 

With the resurgence of interest in concentrating solar technology, there is a renewed interest and 
research in the amount of circumsolar radiation, or sunshapes, as affected by the variable 
properties of the atmosphere. This is especially relevant for power plant projects in regions in 
which no sunshape measurements have been performed so far. 

2.4.2 DHI 
A cloudless atmosphere absorbs and scatters radiation as the DNI penetrates to the ground. Parts 
of the DNI radiation are absorbed (removed) and reflected (scattered) in many other directions 
away from the path of this beam radiation. It is the scattered radiation we see as the sky radiation 
in the hemisphere above the ground. Lord Rayleigh (1871), Mie (1908), and Young (1981) 
developed theories for the mechanism of scattering in the atmosphere. These theories explain 
why the sky radiation appears blue (short wavelength, or blue light, is scattered more efficiently 
by atmospheric gases) and the solar disk tends to appear yellow and red at sunrise and sunset (the 
blue wavelengths are scattered a great deal out of our line of sight, but the longer red 
wavelengths from the solar disk come through unscattered). The sky radiation in the hemisphere 
above the local horizontal is called the DHI. A more technical and practical definition of DHI is 
that it represents all radiation from the sky dome except the DNI (considered to be the quasi-
parallel ray radiation from the solar disk; see also the detailed discussion in the previous 
paragraph). Corresponding to the definition of the experimental DNI (Equation 2-3), penumbra 
functions can be defined for instruments that measure DHI (Major 1992). 

                                                 
4 See http://rredc.nrel.gov/solar/old_data/circumsolar/.  

http://rredc.nrel.gov/solar/old_data/circumsolar/
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DHI includes radiation reflected or scattered by clouds (if present) and ground-reflected radiation 
is re-reflected downward by the atmosphere or clouds. Sky-reflected radiation is difficult to 
model, because the photon interactions with the atmosphere are complex, clouds have varying 
compositions, and the ground has complex optical properties. 

2.4.3 GHI 
The total hemispherical solar radiation on a horizontal surface is the sum of the flux density 
resulting in the DNI at the given SZA, and the additional DHI: 

 GHI = DNI ∙ Cos (SZA) + DHI (2-4) 

SZA is the solar zenith angle computed from the date and time of measurement at a specific 
location. 

This fundamental equation is the basis of most solar radiation measurement system designs, data 
quality assessments, and atmospheric radiative transfer models addressing the needs for solar 
resource data. 

2.4.4 Solar Radiation Resources for Solar Energy Conversion 
Determining the solar radiation components—GHI, DNI, or DHI, or some combination—that are 
applicable to a conversion system is the first step in evaluating design criteria and performance. 
Systems with concentrating optics rely on DNI availability. Low concentration systems may be 
able to use DHI radiation by light-trapping techniques. Flat-plate collectors, fixed or variable in 
their mounting, can use all radiation components. GHI is most often the only available measured, 
or modeled, solar radiation data. In this case, conversion models are used to derive estimates of 
the appropriate quantities (Perez et al. 1987). The solar radiation scientific research community, 
peer-reviewed publications, and published reports are presently used to evaluate, validate, and 
assess the quality of these conversion algorithms. Models for estimating solar radiation are 
constantly appearing and being evaluated (Badescu 2008). A few classic examples are discussed 
in the next sections. 

Model inputs are typically limited to site location, hour of interest, and GHI for the hour, 
although some advanced models include more specialized inputs. We describe a quasi-physical 
model, the Direct Insolation Simulation Code (DISC) of Maxwell (1987), which is based on the 
following premises:  

• A BIRD cleary-sky model is used to calculate clear-sky limits for the direct normal 
atmospheric transmittance. 

• An exponential function of AM, similar in form to physical equations used to calculate 
energy transmission or propagation losses, is used to calculate deviations from clear-sky 
transmittance values, based on atmospheric composition. 

• The equations for computing Kn and other direct normal coefficients are continuously 
variable relative to Kt and AM and reproduce real-world variations in the relationship 
between DNI and GHI throughout monthly intervals. 
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The model is not a rigorous physical algorithm, because the coefficients for computing clear-sky 
transmittance values were derived from empirical regression analyses of measured DNI and GHI 
data from Atlanta, Georgia. Hourly average and thermopile radiometer data were used to derive 
the model. Applicability to higher time resolution (subhourly) data and solid-state (photodiode) 
radiometers that are subject to spectral effects, which do not sense the entire solar spectrum, is an 
open research question (Maxwell 1987). 

2.4.5 Estimating DHI from GHI 
During clear and partly cloudy conditions, diffuse irradiance on a horizontal surface, DHI, is 
often a relatively small part (< 30%) of the GHI. During overcast conditions, the GHI and DHI 
should be identical. When DHI measurements are not available, estimates of the diffuse may be 
needed in conjunction with GHI data to estimate DNI (as in the DISC model). DHI is also useful 
for daylighting applications. Many models based on empirical correlations between GHI and 
DHI data have been developed. Liu and Jordan (1960) developed a model for estimating monthly 
average hourly diffuse. Erbs, Klein, and Duffie (1982), Orgill and Hollands (1977), Iqbal (1983), 
Spencer (1982), and many others have developed algorithms for estimating hourly DHI. These 
algorithms generally use empirical correlations between the global clearness index, Kt, and either 
the diffuse fraction, K ( = DHI/GHI), or the diffuse clearness index, Kd. Many hourly diffuse-
fraction based models exist in the literature (Gueymard and Ruiz-Arias 2014) 

• Kt = Clearness index or global horizontal transmittance of the atmosphere 

= GHI/[TSI ∙ (r0/r)2 ∙ Cos(SZA)] (2-7) 

• Kd = Diffuse transmittance of the atmosphere 

= DHI/[TSI ∙ (r0/r)2 ∙ Cos(SZA)] (2-8) 

2.4.6 Estimating DNI from GHI 
DNI can be evaluated indirectly from the models of the previous section, once the global and 
diffuse components are known, or directly through other separation models that are not based on 
the diffuse fraction approach. Among the many models for estimating DNI from GHI, two of 
them are described below for reference purposes: the Maxwell DISC model and the Perez 
variation on this approach, DIRINT (Perez et al. 1990). This type of model is based on empirical 
relations between clearness indices Kt and Kn (Liu and Jordan 1960): 

• Kt = Clearness index or global horizontal transmittance of the atmosphere 
= GHI/TSI ∙ (r0/r)2 ∙ Cos (SZA)  (2-5) 

• Kn = Direct normal transmittance of the atmosphere 

= DNI/TSI∙ (r0/r)2  (2-6) 

where 

• TSI = Total solar irradiance (mean TSI, ~1366.7 Wm-2 ± 7 Wm-2) 

• r0 = mean Earth-sun distance (149,598 km) 
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• r = Earth-sun distance at the time of interest 

• SZA = Solar zenith angle at the time of interest. 

2.4.7 Estimating Solar Resources on a Tilted Surface 
Solar conversion systems as flat-plate collectors or non-concentrating photovoltaics (PV) are 
tilted toward the sun. Estimating or modeling the irradiance incident upon these systems is 
essential to the performance and yield evaluation of these systems. This irradiance is called 
plane-of-array (POA) irradiance or global titled irradiance (GTI). The GTI can be measured 
directly by pyranometers that are tilted as the collector plane. Some radiative transfer models 
also allow the direct modeling of the irradiance in this plane; however, GHI, DHI, and DNI data 
are more common. Hence, there are several transposition models that convert GHI or a set of 
GHI and DNI information for one timestamp to GTI (Reindl 1990, Liu 1979, Hay 1979, Klucher 
1979, Gueymard 2008, Gueymard 1988, Temps 1977, Willmott 1982). 

2.5 Modeled Data Sets 
As mentioned above, long-term measured data sets are rare, have variable periods of record, and 
are not always easily accessed. Measurement networks or stations providing high-accuracy, up-
to-the-minute measured data are rare, although a wide variety of agricultural research station 
solar radiation data of highly variable quality is available. These types of data require careful 
evaluation and comparison to other sources of data, such as estimated or modeled data, to 
establish appropriateness of use. There are many sets of modeled solar radiation data, typically 
GHI, sometimes with DNI, and DHI. A few examples are the National Solar Radiation Database 
(NSRDB), the Swiss Meteotest METEONORM data set, the European Solar Radiation Atlas 
(ESRA), the National Aeronautics and Space Administration (NASA) surface meteorology and 
solar energy (SSE), and the European Commission’s solar data (SODA) data sets. (See Chapter 5 
for more details about these and other sources of data.) 

Another popular modeled data set is the TMY for a specific location. TMY data sets were 
originally designed for simplified building heating and cooling load calculations. A TMY is 
meant to typify the meteorological conditions at a site of interest and is based on several years of 
meteorological data. Different algorithms to create TMYs and different data sets called TMYs 
exist. Further, similar algorithms and corresponding data sets exist that are called RMYs 
(representative meteorological years), RSYs (representative solar years), or TRYs (test reference 
years). Individual detailed descriptions of the properties of specific data sets will be discussed in 
Chapter 4 and Chapter 5. 

These data sets are used primarily to estimate the relative performance of different conversion 
system designs with respect to a standard data set, and they are not appropriate for optimizing 
performance. Many software applications use TMY data to predict the typical performance of a 
solar conversion system, but this is not the purpose of the original TMY development. 

2.6 Uncertainty Measurements and Models 
Measurements of solar radiation are among the most uncertain in any measurement discipline. 
Empirical models developed from measured solar radiation data, and the validation of any model 
with measured data, always includes the measurement uncertainties in addition to the inherent 
model accuracy. 
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Solar radiation models based on physics or correlations with meteorological variables are 
impossible to validate to an overall accuracy better than the uncertainty of the measured data. 
Measurement uncertainty analysis has been formalized by several organizations, including the 
International Bureau of Weights and Measurements (French acronym BIPM), and published by 
the International Standards Organization (ISO) as the Guide to the Expression of Uncertainty in 
Measurements, which is also known under the acronym GUM (BIPM et al. 1995). 

The uncertainty of resource data will be addressed in all of the following chapters, because it is 
essential for the interpretation of the data independent of the method used for its determination. 

2.7 Spatial and Temporal Variability of Solar Resources 
Earlier we described the variation of the ETR as a function of the 11-year sunspot cycle (less than 
± 0.2%), and the annual variation of the Earth-sun distance (± 3%). These are minor variations 
compared to the influences of the atmosphere, weather, climate, and geography on the variation 
of solar resources at the Earth’s surface. Variations in solar radiation from month to month, 
especially in the latitudes outside the tropics, follow an annual pattern, generally during the 
summer, with lower values during the winter. The year-to-year variation in these patterns is 
called the interannual variability. The coefficient of variation (COV = ratio of the standard 
deviation to the mean of a set of given averages) can be used to quantify this variability. Studies 
of GHI and DNI distributions in the United States show that the range of GHI interannual 
variability is typically 8% to 10%. This is generally approximately half, or less, of the variability 
of DNI, which can be 15% or more at the 68% confidence interval (Wilcox and Gueymard 
2010). 

However, studies show that the COV for annual averages of DNI can approach 10%, depending 
on climate stability. For example, in the NSRDB 2005 update, Daily Statistics Files indicate that 
the COV for Daggett, California, is 6.2%. Interannual COV for annual average GHI is typically 
5%. The COV is based on a single standard deviation and is typically approximately one-third 
the range of data in a sample.  

In the continental United States, differences among radiation resources in the same months in 
different years are generally larger during the winter and smaller during the summer. Variations 
in weather and natural events such as forest fires, volcanic eruptions, dust clouds from drought 
regions, and agricultural activity all can contribute to interannual variations. Figure 2-12 
compares the mean and maximum and minimum monthly average daily total DHI from the 
1961–1990 NSRDB (modeled from meteorological data) to eight individual years of estimates 
based on satellite data (1998–2005) for Daggett, California. Variations much greater or 
somewhat smaller than this are shown for locations with more or less variable weather patterns. 



18 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 2-8. Example of direct-beam monthly average daily total (kWh/m2/day) interannual 

variability from 1961 through 2005 for Daggett, California. Data from Wilcox et al. (2007). Image 
from NREL 

 
Spatial variations in solar resources often come into question, especially if nearby or neighboring 
measured data are available for a site without measured data. Mountainous terrain or highly 
variable urban, agricultural, or other microclimate influences may contribute to high spatial 
variability of the solar resource. Analysis of measured and modeled data correlations to distances 
between stations has generally shown that correlations decrease with increasing station spacing 
and higher time resolution (e.g., 15-minute versus hourly) data integration periods. One study of 
17 sites in Wisconsin showed that correlations for hourly data fell from 0.995 to 0.97 as spacing 
increased from 5 km to 60 km. For 15-minute data, the correlations fael from 0.98 to less than 
0.75 at distances more than 100 km (see Chapter 6). 

Prevailing winds and cloud motion patterns can also affect both spatial and temporal variability 
throughout distances from a few to hundreds of kilometers. A study of a dense solar 
measurement network in Oklahoma showed that correlations between stations degraded from 
95% or better for nearby stations to less than 45% for stations greater than 300 km away, 
depending on the geographical relationship (east, west, northwest, etc.) between the stations. 
Barnett et al. (1998) provided a correlogram for these analyses. Attempts to interpolate between 
stations to estimate solar resources should be used with caution. Attention to the data sample 
period, geography, terrain, weather patterns, and spacing is important and requires careful 
analyses. 

More details on this can be found in Chapter 4, Chapter 5, and Chapter 6. 
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3 Measuring Solar Radiation 
Accurate measurements of the incoming irradiance are essential to solar power plant project 
design and implementation. Because irradiance data are relatively complex, and therefore 
expensive compared to other meteorological measurements, they are available for only a limited 
number of locations. This holds true especially for DNI. Increasingly, developers are in need of 
irradiance data for site resource analysis, system design, and plant operation. Irradiance 
measurements are also used to develop and test models for estimating irradiance and other solar 
irradiance components based on available surface meteorological observations or satellite remote 
sensing techniques. Irradiance measurements will also play an important role in developing solar 
resource forecasting techniques. 

This chapter focuses on the instrument selection, installation, design, and operations and 
maintenance (O&M) of measurement systems suitable for collecting irradiance resource 
measurements. 

3.1 Instrumentation Selection Options 
Before considering instrumentation options and the associated costs, the user must first evaluate 
the data accuracy or uncertainty levels that will satisfy the ultimate analyses based on the 
radiometric measurements. This ensures that the best value can be achieved after the available 
various measurement and instrumentation options are considered. (See the appendix for a list of 
radiometer manufacturers and distributors.) 

By first establishing the project needs for radiometric data accuracy, the user can base instrument 
selection and the levels of effort necessary to operate and maintain the measurement system on 
an overall cost-performance determination. Specifically, the most accurate instrumentation (ISO 
9060 first class; WMO “high quality” or ISO 9060 secondary standard) should not be purchased 
if the project resources cannot support the maintenance required to ensure measurement quality 
consistent with the radiometer design specifications and manufacturer recommendations. In such 
a case, alternative instrumentation with lower maintenance requirements, such as pyranometers 
with diffuser disks or rotating shadowband irradiometers (RSIs), should be preferred. 

Redundant instrumentation is another important consideration to ensure confidence in data 
quality. Multiple radiometers within the project location and/or providing for the measurement of 
all three solar irradiance components (GHI, DHI, and DNI), regardless of the primary 
measurement need, can greatly enhance opportunities for post-measurement data quality 
assessment. 

3.2 Instrument Types 
Instruments designed to measure any form of radiation are called radiometers. In this section, we 
summarize the types of radiometers most commonly used to measure solar radiation resources 
for applications to solar energy technology needs. 

3.2.1 Pyrheliometers and Pyranometers 
Pyrheliometers and pyranometers are two types of radiometers used to measure solar irradiance. 
Their ability to receive solar radiation from two distinct portions of the sky distinguishes their 
designs. As described in Chapter 2, pyrheliometers are used to measure DNI, and pyranometers 
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are used to measure GHI, DHI, or POA irradiances. Table 3-1 summarizes some key attributes of 
these two radiometers. 

Table 3-1. Solar Radiation Instrumentation 

Radiometer Type Measurement FOV (Full Angle) Installation 

Pyrheliometer DNI 5 degrees to 
6.0 degrees 

Mounted on automatic solar tracker 
for alignment with the solar disk 

Pyranometer GHI 2 π steradians Mounted on stable horizontal 
surface free from local obstructionsa 

Pyranometer DHI 2 π steradians Mounted on automatic solar tracker 
fitted with shading mechanism or on 
a manually adjusted shadowband 
platform to block DNI from detector 
surfacea 

Pyranometer POA 2 π steradians Mounted in the POA of the flat-plate 
solar collectora 

a Optionally thermopile pyranometers are installed with powered ventilator and heating to reduce 
contamination of optical surfaces and thermal errors. 

 
Pyrheliometers and pyranometers commonly use either a thermoelectric or photoelectric detector 
to convert solar flux (W/m2) into a proportional electrical signal (microvolts (µV) dc). 
Thermoelectric detectors have an optically black coating that allows for a broad and uniform 
spectral response to all solar radiation wavelengths between approximately 300 nm and 3,000 nm 
(Figure 3-1). Because of the relatively large thermal mass of this detector design, the time- 
response characteristics are typically 1 second to 5 seconds.5 That is, the output signal lags the 
changes in solar flux. Common photoelectric detectors, however, generally respond to only the 
visible and near-infrared spectral regions from approximately 400 nm to 1,100 nm (Figure 3-2). 
These detectors have very fast time-response characteristics—on the order of microseconds. For 
either detector, as installed in commercially available instruments, the electrical signal generated 
by exposure to solar irradiance levels of approximately 1,000 W/m2 is on the order of 10 
millivolts (mV) DC (assuming no amplification of the output signal and an appropriate shunt 
resistor for photodiode sensors). This rather low-level signal requires proper electrical grounding 
and shielding considerations during installation. 

                                                 
5 Physically, the constant represents the time it takes the system’s step response to reach (1–1/e) or approximately 
36.8% of the total stimulus change. 
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Figure 3-1. Thermopile assembly used in an Eppley Laboratory, Inc., model precision spectral 

pyranometer (PSP) 

 

 
Figure 3-2. (Left) Typical photodiode detector and (right) spectral response of LI-COR 
pyranometers LI200SA. Photographs used by permission of LI-COR Biosciences, Inc. 

 
All modern pyrheliometers have a 5-degree FOV, following WMO (2008) recommendations. 
However, the FOV of older instruments may be larger, such as 5.7 degrees to 10 degrees full 
angle.” Pyrheliometers are mounted in automatic solar trackers to maintain the instrument’s 
alignment with the solar disk and fully illuminate the detector from sunrise to sunset (Figure 3-3 
and Figure 3-4). Alignment of the pyrheliometer with the solar disk is determined by a simple 
diopter, or a sighting device in which a small spot of light (the solar image) falls on a mark in the 
center of a target located near the rear of the instrument (Figure 3-5). By convention and to allow 
for small variations in tracker alignment, view-limiting apertures inside a pyrheliometer allow 
for the detection of radiation in a narrow annulus of sky around the sun (WMO 2008). This 
circumsolar radiation component is because of the forward scattering of radiation near the solar 
disk caused by cloud particles, atmospheric aerosols, and other constituents that can scatter solar 
radiation. Depending on the FOV—or, to be more precise, the sensor’s penumbra function (see 
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Chapter 2 section on “DNI and Circumsolar Irradiance”)—and tracker alignment, pyrheliometer 
measurements include varying amounts of circumsolar irradiance contributions to the DNI. 

 
Figure 3-3. Schematic of an Eppley Laboratory, Inc., model normal incidence pyrheliometer (NIP) 

(Bahm and Nakos 1979). Image from the former U.S. Energy Research and Development 
Administration, now DOE 

 

 
Figure 3-4. Pyrheliometers mounted on an automatic solar tracker. Photo from NREL 
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Figure 3-5. Schematics of pyrheliometer alignment diopter configuration (Micek 1981). Image used 

by permission from Leonard Micek 

 
The most accurate measurements of DNI are accomplished using an electrically self-calibrating 
absolute cavity radiometer (see Figure 3-6). This type of pyrheliometer is the basis for the World 
Radiometric Reference (WRR), the internationally recognized detector-based measurement 
standard for DNI. The WMO World Standard Group of absolute cavity radiometers is shown in 
Figure 3-7 (Fröhlich 1991). By design, absolute cavity radiometers have no window and are 
therefore generally limited to fully attended operation during clear-sky conditions to protect the 
integrity of the receiver cavity (Figure 3-8). Removable windows and temperature-controlled all-
weather designs are available for automated continuous operation of these pyrheliometers; 
however, the installation of the protective window nullifies the “absolute” nature of the DNI 
measurement. The window introduces additional measurement uncertainties associated with the 
optical transmittance properties of the window (made from either quartz or calcium fluoride) and 
the changes to the internal heat exchange due to the now sealed system. 
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Figure 3-6. Multiple electrically self-calibrating absolute cavity radiometers mounted on solar 

trackers with control and data acquisition electronics. Photo from NREL 

 

 

Figure 3-7. The World Standard Group of six absolute cavity radiometers is used to define the 
WRR or DNI measurement standard. Photo from NREL 
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Figure 3-8. Schematic of the Eppley Laboratory, Inc., model AHF absolute cavity pyrheliometer. 

Image modeled from Reda (1996) 

 
A pyranometer has a thermoelectric or photoelectric detector with a hemispherical or “fish-eye” 
FOV (360 degrees or 2π steradians) (see Figure 3-9). This type of radiometer can be mounted on 
a horizontal platform to measure GHI. In this orientation, the pyranometer has a complete view 
of the sky dome. Ideally, the mounting location for this instrument is free of natural or artificial 
obstructions on the horizon. Alternatively, the pyranometer can be mounted tilted to measure 
tilted irradiance, vertical irradiance, or reflected irradiance. 

The pyranometer detector is mounted under a protective precision-ground quartz (or other 
material) dome or a diffuser. Both designs protect the detector from the weather and provide 
optical properties consistent with receiving hemispheric solar radiation. Pyranometers can be 
fitted with ventilators that constantly blow air—sometimes heated— from under the instrument 
and over the dome (Figure 3-10). The ventilation reduces the potential for contaminating the 
pyranometer optics caused by dust, dew, frost, snow, ice, insects, or other material. Ventilators 
and heating also affect the thermal offset characteristics of pyranometers with single-black 
detectors (Vignola, Long, and Reda 2009). The ventilation devices can, particularly when heated, 
require a significant amount of electrical power (5 W–20 W), adding to the required capacity for 
on-site power generation in remote areas.  
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Consistent with their low-cost design based on a photodiode detector, these pyranometer designs 
employ a diffuser above the detector (Figure 3-11). Acrylic diffusers can be more dust tolerant 
than optical glass domes (Maxwell et al. 1999). 

 
Figure 3-9. Schematic of the Eppley Laboratory, Inc., model PSP. Image from NREL 

 

 
Figure 3-10. Kipp & Zonen model CM22 pyranometers installed in CV2 ventilators. 

Photo from NREL 
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Figure 3-11. LI-COR model LI-200SA pyranometer with photodiode detector and acrylic diffuser 

fore optic. Photo from LI-COR 

 
3.2.2 Pyrheliometer and Pyranometer Classifications 
The ISO and the WMO have established classifications and specifications for the measurement 
of solar irradiance (ISO 1990, WMO 2008). We encourage the reader to review these documents 
in more detail as part of project planning for solar resource measurements before acquiring 
pyrheliometers or pyranometers. 

Estimated measurement uncertainty is the basis for these pyrheliometer and pyranometer 
classifications. The WMO (2008) recognizes the difficulties associated with measuring solar 
irradiance: 

It may be said generally that good quality measurements are difficult to achieve in 
practice, and for routine operations they can be achieved only with modern 
equipment and redundant measurements. Some systems still in use fall short of 
best practice, the lesser performance having been acceptable for many 
applications. However, data of the highest quality are increasingly in demand. 

The WMO characteristics of operational pyrheliometers and pyranometers are presented in Table 
3-2 and Table 3-3. The ISO specification lists for these radiometers are presented in Table 3-4 
and Table 3-5. Our purpose for providing these classifications is to address questions about 
differences in data quality and to give the reader a better understanding of the data quality 
afforded by particular instrument classes. In the tables, Rs denotes responsivity, or signal per 
watt per square meter of flux, for example, millivolts /(W/m2). The reciprocal of Rs is the 
calibration factor used to convert signal to flux. 
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Table 3-2. WMO Characteristics of Operational Pyrheliometers 
for Measuring DNIa  

Characteristic High Qualitya Good Qualitya 

Response time (95% response) < 15 s < 30 s 

Zero offset—response to 5-K/h change in ambient 
temperature 

2 W/m2 4 W/m2 

Resolution—smallest detectable change in W/m2 0.51 1 

Stability—change per year, percentage of full scale 0.1 0.5 

Temperature response—percentage maximum error 
caused by any change of ambient temperature within an 
interval of 50 K 

1 2 

Nonlinearity—percentage deviation from the responsivity 
at 500 W/m2 caused by any change of irradiance within 
the range from 100 W/m2 to 1,100 W/m2 

0.2 0.5 

Spectral sensitivity—percentage deviation of the product 
of spectral absorptance and spectral transmittance from 
the corresponding mean within the range from 300 nm  
to 3,000 nm 

0.5 1.0 

Tilt response—percentage deviation from the respon-
sivity at 0 degrees tilt (horizontal) caused by a change in 
tilt from 0 degrees to 90 degrees at 1,000 W/m2 

0.2 0.5 

 Achievable uncertainty (95% confidence level):   

 1-min totals Percent 
kJ/m2 

Wh/m2 

0.9 
0.56 
0.16 

1.8 
1 
0.28 

 1-h totals Percent 
kJ/m2 

Wh/m2 

0.7 
21 
5.83 

1.5 
54 
15.0 

 Daily totals Percent 
kJ/m2 

Wh/m2 

0.5 
200 

1 
400 

a High quality means “near state of the art”; good quality refers to instruments for network 
operation. 

  



29 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Table 3-3. WMO Characteristics of Operational Pyranometers 
for Measuring GHI or DHI 

Characteristic High 
Quality 

Good 
Quality 

Moderate 
Quality 

Response time—95% response < 15 s < 30 s < 60 s 

Zero offset—Response to 200 W/m2 net thermal 
radiation (ventilated) Response to 5-K/h change in 
ambient temperature 

7 W/m2
 

2 W/m2
 

7 W/m2
 

2 W/m2
 

7 W/m2
 

2 W/m2
 

Resolution—smallest detectable change 1 W/m2
 5 W/m2

 10 W/m2
 

Stability—change per year, percentage of full scale 0.8 1.5 3.0 

Directional response for beam radiation—the range of 
errors caused by assuming that the normal incidence 
Rs is valid for all directions when measuring, from any 
direction, a beam radiation that has a normal incidence 
irradiance of 1,000 W/m2

 

10 W/m2
 20 W/m2

 30 W/m2
 

Temperature response—percentage maximum error 
caused by any change of ambient temperature within 
an interval of 50 K 

2 4 8 

Nonlinearity—percentage deviation from the Rs at 500 
W/m2

 caused by any change of irradiance within the 
range from 100 W/m2

 to 1,000 W/m2
 

0.5 1 3 

Spectral sensitivity—percentage deviation of the 
product of spectral absorptance and spectral 
transmittance from the corresponding mean within the 
range from 300 nm to 3,000 nm 

2 5 10 

Tilt response—percentage deviation from the Rs at  
0 degree tilt (horizontal) caused by a change in tilt from 
0 degree to 90 degrees at 1,000 W/m2 

0.5 2 5 

Achievable uncertainty—95% confidence level 
Hourly totals 
Daily totals 

 
3% 
2% 

 
8% 
5% 

 
20% 
10% 

 
Even among the instrument classifications and specifications, there can be some measurement 
uncertainty variations. The user should research various instrument models to gain familiarity 
with the design and measurement characteristics in view of a particular application (Myers and 
Wilcox 2009; Wilcox and Myers 2008; Habte, Wilcox, and Stoffel 2014). 
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Table 3-4. ISO 9060 Specifications Summary 
for Pyrheliometers Used To Measure DNI 

Pyrheliometer Specification List 

Specification 
Class of Pyrheliometer 

Secondary 
Standard Class First Class Second 

Response time—95% response < 15 s < 20 s < 30 s 

Zero offset 
Response to 5-K h-1 change in 
ambient temperature 

 
± 1 Wm-2 

 
± 3 Wm-2 

 
± 6 Wm-2 

Resolution—smallest detectable 
change in Wm-2 

± 0.5 Wm-2 ± 1 Wm-2 ± 5 Wm-2 

Stability—percentage of full scale, 
change/year 

± 0.5% ± 1% ± 2% 

Nonlinearity—percentage deviation 
from the responsivity at 500 W/m2 
because of change in irradiance 
between 100 Wm-2 and 1,000 Wm-2 

± 0.2% ± 0.5% ± 2% 

Spectral selectivity—percentage 
deviation of the product of the spectral 
absorptance and the spectral 
transmittance from the corresponding 
mean between 0.35 µm and 1.5 µm 

± 0.5% ± 1% ± 5% 

Temperature response—total 
percentage deviation because of 
change in ambient temperature within 
an interval of 50 K 

± 1% ± 2% ± 10% 

Tilt response—percentage deviation 
from the responsitivity at 0 degrees tilt 
(horizontal) because of change in tilt 
from 0 degrees to 90 degrees at 1,000 
W/m-2 irradiance 

± 2% ± 0.5% ± 2% 

Traceability—maintained by periodic 
comparison 

With a primary 
standard 

pyrheliometer 

With a 
secondary 
standard 

pyrheliometer 

With a first-
class 

pyrheliometer 
or better 
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Table 3-5. ISO 9060 Specifications Summary 
for Pyranometers Used To Measure GHI and DHI 

Pyrheliometer Specification List 

Specification 
Class of Pyrheliometera 

Secondary 
Standard Class First Class Second 

Response time—95% response < 15 s < 30 s < 60 s 

Zero offset 
Response to 200 Wm-2 net thermal 
radiation (ventilated) 
Response to 5-Kh-1 change in 
ambient temperature 

 
± 7 Wm-2 

 

± 2 Wm-2 

 
± 15 Wm-2 

 

± 4 Wm-2 

 
± 30 Wm-2 

 

± 8 Wm-2 

Resolution—smallest detectable 
change 

± 0.5% ± 1% ± 3% 

Stability—percentage change in 
responsivity per year 

   

Nonlinearity—percentage deviation 
from the responsivity at 500 W/m2 
because of change in irradiance 
between 100 Wm-2 and 1,000 Wm-2 

± 10 Wm-2 ± 20 Wm-2 ± 30 Wm-2 

Directional response for beam radiation 
(the range of errors caused by assuming 
that the normal incidence responsivity is 
valid for all directions when measuring, 
from any direction, a beam radiation that 
has a normal incidence irradiance of  
1,000 Wm-2 

± 3% ± 5% ± 10% 

Spectral selectivity—percentage deviation 
of the product of the spectral absorptance 
and the spectral transmittance from the 
corresponding mean between 0.35 µm 
and 1.5 µm 

2% 4% 8% 

Temperature response—total percentage 
deviation because of change in ambient 
temperature within an interval of 50 K 
 

± 0.5% ± 2% ± 5% 

Tilt response—percentage deviation 
from the responsitivity at 0 degrees tilt 
(horizontal) because of change in tilt 
from 0 degrees to 90 degrees at 1,000 
W/m-2 irradiance 

   

a The highest category for pyranometers is the secondary standard, because the most accurate 
determination of GHI has been suggested to be the sum of the DNI as measured by an absolute cavity 
radiometer and the DHI as measured by a secondary standard pyranometer shaded from the DNI by a 
disk. 
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3.2.2.1 Correction Functions for Systematic Errors of ISO First Class and Secondary 
Standard Instruments 

Some of the errors of pyrheliometers and pyranometers described in the previous section are 
systematical and can be reduced. An example of a systematic reduction is the correction of the 
solar zenith/cosine response. For example, instead of using only one calibration constant for a 
pyrheliometer, NREL determines calibration constants for different intervals of SZA. Similar 
correction curves for pyranometers are also measured and provided by some manufacturers.  

Also, especially if the sensor temperature of pyranometers and pyrheliometers is measured using 
a temperature-dependent resistor close to the thermopile, a temperature correction can be applied 
too. Correction coefficients are supplied by the manufacturer. 

Measurements from only black pyranometers can be corrected for the thermal offset using 
additional measurements from pyrgeometers. Alternatively, a less accurate correction can be 
made based on estimations of the thermal offset from the often negative measurements collected 
during the night (Dutton et al. 2000). 

3.2.3 RSIs 
RSIs use a pyranometer that is periodically shaded by a motorized shadowband that moves 
across the detector’s FOV (Figure 3-12). The principle of operation of RSIs is to measure GHI 
when unshaded and DHI when shaded. Then DNI is calculated using the following equation 
relating GHI, DHI, and DNI: 

 DNI = (GHI – DHI) Cos (SZA) 

RSIs are often called RSRs (rotating shadowband radiometers) or RSPs (rotating shadowband 
pyranometer), depending on the instrument manufacturer. The notation RSI refers to all such 
instruments measuring irradiance by use of a rotating shadowband. There are two types of RSIs: 
RSIs with continuous rotation and RSIs with discontinuous rotation. 
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Figure 3-12. Four commercially available RSIs: (clockwise from upper left) An Irradiance, Inc., 
model RSR2; a Reichert GmbH RSP 4G (previously used by SM-AG); a Yankee Environmental 

Systems, Inc., model SDR-1; and a CSP-Services GmbH Twin-RSI. Photos by (clockwise from top) 
Irradiance, Inc.; Reichert GmbH RSP 4G; NREL; and CSP-Services 

 
The operational principal of RSIs with continuous rotation is shown in Figure 3-13. At the 
beginning of the rotation, the shadowband is below the pyranometer, in its rest position. The 
rotation is performed with constant angular velocity and takes approximately 1 second. During 
the rotation, the irradiance is measured with a high and constant sampling rate (approximately 1 
kHz). This measurement is called burst or sweep. At the beginning of the rotation, the 
pyranometer measures GHI. In the moment when the center of the shadow falls on the center of 
the sensor, it approximately detects DHI; however, the shadowband covers some portion of the 
sky so that the minimum of the burst is less than the DHI. Thus, so-called shoulder values are 
determined by curve analysis algorithms.  

Such algorithms are usually implemented in the data logger program and use the maximum of 
the absolute value of the burst’s slope to find the position of the “shoulder values.” The 
difference between the GHI and the average of the shoulder values is added to the minimum of 
the curve to obtain the DHI. Subsequently, DNI is calculated by the data logger using GHI, DHI, 
and the actual sun height angle calculated by the known time and coordinates of the location, as 
stated above. All of the RSIs shown in Figure 3-12 except for the SDR-1 work with a continuous 
rotation. 
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Figure 3-13. Burst (sweep) with sensor signal and the derived GHI, shoulder values, and the DHI. 

Image from Wilbert (2014) 

 
RSIs with discontinuous rotation do not measure the complete burst, but only four points of it. 
First, the GHI is measured while the shadowband is in the rest position. Then the shadowband 
rotates from the rest position toward the position at which it nearly shades the pyranometer, 
stops, and a measurement is taken (e.g., during 1 second for the SDR-1 in Figure 3-12). Then it 
continues the rotation toward the position at which the shadow lies centered on the pyranometer, 
and another measurement is taken. The last point is measured in a position at which the shadow 
just passed the pyranometer. The measurement with the completely shaded sensor is used 
equivalently to the minimum of the burst, as shown in Figure 3-13. The two measurements for 
which the shadow is close to the sensor are used equivalently to the shoulder values. The 
shoulder values are used to correct for the portion of the sky blocked by the shading band. 

The two types of RSIs have advantages and disadvantages. An RSI with continuous rotation of 
the shadowband needs a pyranometer with a fast response time (< 1 second, e.g., approximately 
10 µs); thus, thermal sensors as described in ISO 9060 cannot be used. Instead, semiconductor 
sensors are used—for example, the Silicon (Si)-pyranometer LI-200SA shown in Figure 3-11. 
Because of the nonhomogeneous spectral response of such Si pyranometers (see Figure 3-2), the 
measurement accuracy of secondary standard thermal pyranometers cannot be reached and 
correction functions for this systematic error have to be applied to reach the required accuracy 
for the resource assessment. These functions will be discussed below.  

RSIs with discontinuous rotation can use sufficiently long measurement times for each of the 
four points to allow the application of thermal pyranometers (e.g., the Yankee TSR-1 thermopile 
shadowband radiometer); thus, the spectral error of a Si pyranometer detector can be avoided. 
However, the discontinuous rotation is connected to other disadvantages compared to the 
continuous rotation. Although RSIs with continuous rotation are not affected by small azimuth 
alignment errors (± approximately 5 degrees), the azimuth alignment of RSIs with discontinuous 
rotation is crucial for their accuracy. Also, the accuracy of the sensor’s coordinates and the time 
is more important for the discontinuous rotation. If the shadowband stops in the wrong position, 
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the DHI measurement fails. Further, the duration of the measurement with a discontinuous 
rotation increases the measurement uncertainty. This is especially relevant if thermal sensors are 
used and if the sky conditions are not stable (e.g., cloud passages). If the GHI and the sky 
radiance distribution change during the measurement of the four points, the data used to 
determinme the DHI will deviate noticeably from the true value. This complication is not very 
relevant for the continuously rotating RSIs, because the rotation takes approximately only 1 
second.  

Both RSIs use radiometers with diffusers that have varying spectral transmittance over different 
spectral regions. The calibration of the radiometers themselves are usually performed either 
throughout a wide range of clear to cloudy conditions (and averaged) or selected clear 
conditions. In both cases, not all the relative variations throughout all spectral regions can be 
accounted for in the radiometer calibrations. This leads to additional uncertainties related to the 
spectral transmittance of the diffusers and varying spectral conditions in the field. 

DHI is typically determined one or four times a minute, but GHI measurements can be sampled 
in a higher frequency without the rotation of the shadowband—for example, every second. The 
variation of the GHI also contains some information about the change in DNI. Different 
algorithms are used to determine the average of the DHI and DNI between two DHI 
measurements using the more frequent GHI measurement. 

The initially lower accuracy of RSIs compared to ISO 9060 first class pyrheliometers and 
secondary standard pyranometers is often compensated by some advantages of RSIs. Because of 
their low soiling susceptibility (Pape et al. 2009, Geuder and Quaschning 2006, Maxwell et al. 
1999), low power demand, and comparatively lower cost (instrumentation and O&M), RSIs 
show significant advantages compared to thermal sensors when operated under the measurement 
conditions of remote weather stations.  

Without the application of corrections of the systematic deviations and a matched calibration 
method, RSIs yield only an uncertainty of 5% to 10% and more. This accuracy is notably 
improved with proper calibration of the sensors and the correction functions, which are described 
in the following. Most instrument providers also offer post-processing software or services that 
include these correction functions. Users should inquire of the manufacturer about whether such 
post-processing is part of the instrument package and is readily available. 

Because of the stated disadvantages of RSIs with discontinuous rotation and the higher relevance 
of RSIs with continuous rotation for solar energy applications, we focus on RSIs with Si 
pyranometers in the following. More information about RSIs with discontinuous rotation can be 
found in Harrison, Michalsky, and Berndt (1994). 

3.2.3.1 Correction Functions and Calibration Procedures for RSIs 
The main systematic errors of RSIs with Si sensors are caused by the spectral response of the Si 
pyranometers, their cosine response, and the temperature dependence. 

Several research groups have developed correction functions that reduce the systematic errors of 
RSIs. In all cases, the Si pyranometer of the RSI is a LICOR LI-200SA. Whereas temperature 
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correction is similar in all versions (King and Myers 1997; Geuder, Pulvermüller, and Vorbrügg 
2008), the methods for the spectral and cosine corrections vary among the publications.  

Alados, Batlles, and Olmo (1995) use tabular factors for different sky clearness and skylight 
brightness parameters and a functional correction depending on the incidence angle. King and 
Myers (1997) propose functional corrections in dependence on AM and the angle of incidence 
derived primarily for GHI. This approach was further developed by Augustyn et al. (2002) and 
Vignola (2006), including also diffuse and subsequently direct beam irradiance. The combination 
of the GHI correction presented in Augustyn et al. (2002) combined with the diffuse correction 
from Vignola (2006) provides a complete set of corrections for LICOR LI-200SA-based RSIs. 
Independently, a method for DNI, GHI, and DHI correction was developed by the DLR using 
functional corrections, including a particular spectral parameter composed from GHI, DHI, and 
DNI (Geuder, Pulvermüller, and Vorbrügg 2008). Additional corrections in dependence on AM 
and incidence angle were used. Another set of correction functions was developed by CSP-
Services and is presented in Geuder et al. (2011). 

In addition to the corrections above, special calibration techniques are required for RSIs. At the 
time of this writing, RSIs with continuous rotation are equipped with LI-COR LI-200SA silicon 
pyranometers. They usually come precalibrated by the manufacturer LI-COR for global 
irradiance by outdoor comparisons with an Eppley pyranometer (PSP) with an accuracy of < 5% 
(LI-COR Biosciences 2005). Thus, an additional calibration (e.g., on-site or with respect to DHI, 
DNI, or GHI independently) of the RSIs can noticeably improve the accuracy. 

Because of the rather narrow and inhomogeneous spectral response of the photodiodes and the 
combined measurement of DHI and GHI, only some aspects of the existing ISO standards for 
pyrheliometer and pyranometer calibration can be transferred to RSI calibration. The calibration 
methods described in ISO 9846 (ISO 1993) and ISO 9847 (ISO 1992) for pyranometers and in 
ISO 9059 (ISO 1990) for pyrheliometers are based on simultaneous solar irradiance 
measurements with test and reference instruments recorded with selected instrumentation. For 
calibrations using a reference pyrheliometer (ISO 1990, ISO 1993), measurements are taken 
under specified meteorological conditions. Following the recommendations of the standards, 
measurements should be taken near solar noon and when DNI is greater than 700 W/m². The 
angular distance of clouds from the sun has to be greater than 15 degrees for pyrheliometer 
calibration and greater than 45 degrees for pyranometers. Also, cloud cover should be less than 
1/8, the cloud movement has to be considered for the calibration, and Linke turbidities should be 
less than 6. The Linke turbidity is a measure of the attenuation of the cloudless atmosphere. The 
Linke turbidity coefficient represents the number of clean and dry atmospheres that result in the 
same attenuation as the real cloudless atmosphere. One method to derive the Linke turbitiy is 
presented in Ineichen and Perez (2002). For pyranometer calibrations using a reference 
pyranometer (ISO 1992), the sky conditions are less defined. The calibration interval for the 
latter case is adjusted depending on the sky conditions. 

Calibrating RSI instruments involves calibrating for DNI, DHI and GHI, each of which possess 
distinctly different spectral power distributions. Because of the spectral response of the silicon 
detectors and/or diffusers, it is problematic to calibrate based on only a few series of 
measurements and under the special conditions defined in ISO 9847 and ISO 9059. This is 
possible only for thermal sensors because of their homogenous spectral response covering at 
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least 300 nm to 3 µm (> 99% of the ASTM G173 airmass 1.5-DNI spectrum). A similar 
calibration for RSIs would need the additional assumption that all RSIs from one manufacturer 
have exactly the same known spectral and cosine response. Preferably, a wide variety of 
meteorological conditions have to be included in the calibration period and then the conditions 
should be characterized wisely during the calibration process. The accuracy of the calibration 
generally improves when the conditions during the calibration represent the conditions at the site 
where the RSI later is operated. In addition to the cloud cover, the influences of aerosols, water 
vapor, and site altitude on the solar spectrum have to be considered (Myers 2011). Calibrations 
with artificial radiation sources that lack the spectral power distributions of natural solar 
radiation components usually lack the variety of natural irradiation conditions; therefore, field 
calibrations under natural irradiation conditions are preferred. 

For example, RSI calibrations are performed at NREL in Golden, Colorado, or by DLR on the 
Plataforma Solar de Almería in Spain. There, RSIs are operated parallel to ISO 9060 first class 
pyrheliometers and secondary standard pyranometers under real-sky conditions (see Figure 3-
14). The duration of this calibration is from several hours until more than one year; thus, it 
provides a data base for the analysis of systematic signal deviations and measurement accuracy. 
An analysis of the dependence of the calibration constants on the duration of the calibration 
period for one RSI is presented in Geuder, Affolter, and Kraas (2012)). Data quality is analyzed 
and compared to the reference irradiances. RSI calibrations are performed according to the 
different methods. All published calibration techniques are based on the comparison of corrected 
RSI signals (using the existing correction functions described above) to irradiance measurements 
with thermal sensors.  

Depending on the calibration method, one, two, or even three calibration constants are defined. 
The motivation for determining one calibration constant is that only one pyranometer is used and 
that the calibration based on GHI is less time consuming than a calibration for GHI, DHI, and 
DNI. Becaues of the pyranometer’s spectral response, sensitivity for DHI, GHI, and DNI is not 
the same; hence, the application of two or three calibration constants is physically reasonable 
even though only one sensor is used. Examples for the drift of GHI calibration constants from 
Geuder, Pulvermüller, and Vorbrügg (2008) were investigated for nine sensors in Geuder et al. 
(2010). For recalibration periods between 2 years and 3¾ years, changes of this calibration 
constant were below 1% in most cases. Recalibration is recommended at least every two years. 
An overview of RSI calibration methods is presented in Geuder et al. (2011), and more details 
can be found in Geuder, Pulvermüller, and Vorbrügg (2008), Kern (2010), and Geuder et al. 
(2010). A case study for the reached accuracy for different combinations of correction functions 
and calibration methods is summarized in the next paragraph. 
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Figure 3-14. RSI calibration station at Plataforma Solar de Almería. Photo by Stefan Wilbert, DLR 

 
3.2.3.2 Accuracy of RSIs 
The accuracy of RSIs was investigated empirically in various case studies described below. In 
addition, the uncertainty of Si-based RSI sensors is also presented in this chapter in the section 
on “Estimating the Uncertainty of DNI Field Measurements.” 

As stated above, the accuracy of RSIs strongly depends on the correction functions used and the 
calibration. A comparative evaluation of different existing correction and calibration procedures 
for 39 RSIs is presented in Geuder et al. (2011). The largest part of the data set used in this case 
study has been collected at Plataforma Solar de Almería, but data from four additional sites in 
different climate zones and at different altitudes was also used. Geuder et al. (2010) present a 
case study with a focus on the site dependence of RSI performance. Including the analysis of 
uncorrected raw data (using LI-COR calibrations), five cases were compared: (1) the raw 
uncorrected data; (2) an algorithm from Geuder et al. (2011) called CSPS2011; (3) an algorithm 
from Geuder, Pulvermüller, and Vorbrügg (2008) with the notation DLR2008; (4) the GHI 
correction algorithm from Augustyn et al. (2002) combined with the diffuse correction from 
Vignola (2006) with one single calibration constant for GHI, DHI, and DNI, denoted US-1; and, 
finally, (5) the same as (4) but with three separate calibration constants for GHI, DNI, and DHI, 
called US-3. 

The root mean square (RMS) deviations for the five analyzed cases is plotted in Figure 3-15. It 
was concluded that corrections US-3, DLR2008, and CSPS2011 yield noticeably better 
accuracies compared to raw data and US-1. The analysis also investigated the accuracy for the 
annual sums of GHI, DNI, and DHI. It was shown that the average of the absolute annual 
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deviations for the 39 RSIs for DNI was less than 1% for CSPS2011, DLR2008, and US-3. For 
the post-processing techniques CSPS2011 and DLR2008, this average was even below 0.5 %. 

 
Figure 3-15. Maximum, mean, and minimum RMS deviations of irradiance values with a time 

resolution of 10 minutes from 39 RSIs compared to thermopile sensors. The error bars show the 
maximum and the minimum deviation of the 39 data sets. Data sets for uncorrected raw values as 

well as for four different corrections were analyzed. Image from Geuder et al. (2011)  

 
An empirical estimation of the difference of subhourly DNI measurements after the application 
of correction functions and an RSI specific calibration is approximately 3%. This fits with the 
results presented in Augustyn et al. (2002)) and Geuder, Pulvermüller, and Vorbrügg (2008)), 
and also to the uncertainty analysis presented below in the section on “Estimating the 
Uncertainty of DNI Field Measurements.” In other measurement campaigns, a comparable 
accuracy of RSI measurements was stated for annual scale as reached with properly maintained 
high-precision instruments such as pyrheliometers (Geuder et al. 2010). However, remaining 
aspects concerning the spectral corrections are stated in Geuder et al. (2010) and Myers (2011), 
so further improvements of the corrections and calibration techniques are being investigated. 

3.2.4 Other Instruments That Can Be Used to Derive DHI and DNI 
In addition to the already described instruments, other instruments might be used to derive DHI 
or DNI. For example, the Scanning Pyrheliometer/Pyranometer (SCAPP) (Bergholter and Dehne 
1994) or the sunshine duration sensor Soni e3 (Lindner 1984) can also be used to derive DNI; 
however, these two sensors reach only lower accuracies compared to tracked pyrheliometers, 
thermal pyranometers with shading balls or disks, and RSIs, as documented in Geuder et al. 
(2006). It should be mentioned here that older analog sunshine recorders, such as the Campbell-
Stokes sunshine recorder, do not deliver DNI and GHI. Sunshine duration might be used only in 
models to derive irradiation data if rough estimates are required (which is not the case for solar 
power plant projects). The Campbell-Stokes sunshine recorder focuses the direct beam by a 
simple spherical lens (glass ball) to create burn marks during clear periods (when DNI exceeds 
120 Wm-2). Campbell-Stokes sunshine recorders have been used for more than a century to 
measure solar radiation around the world (Iqbal 1983; Vignola, Michalsky, and Stoffel 2012), 
but such analog sunshine recorders are rather of historic importance.  

An option to measure DHI and GHI with one instrument is the SPN1. The SPN1 is shown in 
Figure 3-16. Using the solar elevation angle and the GHI and DHI measurement, the DNI can be 
calculated. 
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Figure 3-16. Delta-T Devices, Ltd., SPN1 

 
The instrument consists of an array of seven thermopile radiation detectors that are distributed 
under a glass dome in a hexagonal pattern. The detectors are positioned under diffuser disks and 
a special shadow mask. The shape of the mask is selected such that for any position of the sun in 
the sky there will always be one or more detectors that are fully shaded from the sun and exposed 
to approximately half of the diffuse radiation (for completely overcast skies). Also, one or more 
detectors are exposed to the full solar beam for all positions. The minimum and the maximum 
readings of the seven detectors are used to derive GHI and DHI. 

With this principle of operation, GHI, DHI, and DNI can be derived without any moving parts. 
Further, the SPN1’s low power demand increases its suitability for operation in remote sites 
compared to DNI or DHI measurements involving solar trackers. First results about the 
instrument’s accuracy indicate that the SPN1’s DNI has higher errors compared to the DNI 
measured with RSIs (Vuilleumier et al. 2013). Further results about the SPN1 at six different 
locations worldwide can be found in a discussion paper by Badosa et al. (2014). The sensitivity 
of the SPN1 to sensor soiling is currently being investigated as well as the possibility of 
improving its accuracy with more sophisticated corrections. 

3.3 Measurement Uncertainty 
Every measurement only approximates the quantity being measured, and it is incomplete without 
a quantitative statement of uncertainty. Each element of a measurement system contributes to the 
final uncertainty of the data. Accurate measurements of solar irradiance depend on the radiometer 
design, hardware installation scheme, data acquisition method, measurement system O&M, 
calibration method and frequency, and possible real-time or a posteriori corrections to the data. A 
successful measurement uncertainty analysis produces no properly measured data that exceed the 
expected range of uncertainty. 

This overview of measurement uncertainty is based on Myers et al. (2002), Reda et al. (2011), 
Stoffel et al. (2000), and Wilcox and Myers (2008). 

3.3.1 Terminology 
Historically, uncertainty analysis treated sources of uncertainty in terms of random and bias error 
types. Random sources were related to the standard deviation or variance of measured data sets. 
Biases were estimates of deviations from a “true value” primarily based on engineering 
judgments of the measurement system performance. Total uncertainty (UT) was computed as the 
square root of the sum of the squares for these two error types: 
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 UT = [Σ (Bias)2 + Σ(2·Random)2]1/2 (3-1) 

where the factor of 2 in the random term was necessary to “inflate” the random component to 
provide an approximate 95% confidence interval for the computed value of UT, assuming the 
data were normally distributed (i.e., random). 

The GUM is currently the accepted guide for measurement uncertainty (ISO 2008). GUM 
defines Type A uncertainty values as derived from statistical methods and Type B sources as 
evaluated by other means, such as scientific judgment, experience, specifications, comparisons, 
and calibration data. GUM defines the concept of a standard uncertainty (Ustd) for each 
uncertainty type, which is an estimate of an equivalent standard deviation (of a specified 
distribution) of the source of uncertainty. The combined uncertainty (UC) is computed from the 
Type A and Type B standard uncertainties summed under quadrature. The GUM replaces the 
historical factor of 2 with a coverage factor, k (which depends on the known or assumed 
statistical distribution of uncertainties) and computes the expanded uncertainty (UE) as: 

 UE = k· UC = k· [Σ (Type B)2 + Σ (Type A)2]1/2  (3-2) 

For small samples (n < 20) from a normal distribution, k may be selected from Student’s t-
distribution. The coverage factor (k) is usually in the range of 2 to 3 for confidence intervals of 
95% and 99%, respectively (Taylor and Kuyatt 1987). For a 95% confidence interval, UE is twice 
the value of UC. 

When a result, R, is functionally dependent on several variables, xi, where i = 1 to n, the 
propagation of error is used: 

 UR = [∑i (∂XiR · ei)2]1/2  (3-3) 

where 

• UR = uncertainty in the resultant 

• ei = estimated uncertainty in variable Xi 

• Xi = independent variable 

• ∂XiR = the partial derivative of the response R with respect to Xi (sensitivity function for 
variable Xi). 

The GUM procedure can be summarized in four steps (Reda 2011): 

1. Determine the process measurement equation. 

2. List or estimate the standard uncertainty for each variable in the measurement equation 
and for each component (curve-fitting uncertainty, environmental conditions uncertainty, 
etc.) that might introduce uncertainty to the measurement process. 

3. Calculate the combined standard uncertainty using the root-sum-of-squares method of all 
standard uncertainties in Step 2 and the sensitivity coefficients obtained through partial 
derivative of the variables in the measurement equation. 
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4. Calculate the expanded uncertainty by multiplying the combined standard uncertainty by 
the coverage factor, typically by applying Student’s t-analysis to determine the 
appropriate coverage factor (typically 2 for 95% and 3 for 98% confidence, respectively, 
for large data sets). 

3.3.2 Estimating DNI Measurement Uncertainty 
Two measurement processes are applicable to DNI measurement uncertainty analysis: 

• Pyrheliometer calibration 

• Field measurements. 

Uncertainty in measurements begins with the uncertainty in calibration references, calibration 
processes, and sensor design characteristics. For example, for thermopile sensors, a calibration 
constant is required to convert the output voltage to the required irradiance (Reda et al. 2008). 
These calibration constants are not temporally stable, as shown for the time series plot of 
calibration responsivities of two pyrheliometers in Figure3-17. The resulting uncertainty in 
calibration factors must then be combined with the influence of additional sources of uncertainty 
in the field measurement instrumentation, installation methods, data acquisition, and O&M 
processes (Reda 2011).  

 
Figure 3-17. Calibration histories for two pyrheliometer control instruments spanning 12 years. 

Image from NREL 

 
3.3.3 Estimating the Uncertainty of Pyrheliometer Calibrations 
The internationally accepted Système Internationale (SI) traceable reference for the measurement 
of terrestrial solar radiation is the WRR. This internationally recognized measurement reference 
is a detector-based standard maintained by a group of electrically self-calibrating absolute cavity 
pyrheliometers at the WRC maintained by the Physical Meteorological Observatory in Davos, 
Switzerland. The present accepted inherent uncertainty in the WRR is ± 0.30% (Finsterle 2011). 
Reference cavity pyrheliometers used as national and institutional standards are calibrated by 
comparison to the World Standard Group of absolute cavity pyrheliometers (Figure 3-7) 
maintainted by the WMO- Physical Meteorological Observatory, which embody the WRR at 
international pyrheliometer comparisons conducted by the WRC once every five years.  
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Transfer of calibrations from the WRR to national standards results in an expanded uncertainty6 
for these measurement standards of ± 0.45% (Reda, Dooraghi, and Habte 2013). The annual 
transfer of calibrations from national reference absolute cavity radiometers to pyrheliometers for 
field measurements results in absolute uncertainty (in the calibration factors) of ± 1.0%, 
primarily because of the environmental influences on the performance of field pyrheliometers. 
The calibration stability of commercially available pyrheliometers is generally less than a 1% 
change in responsivity (Rs) per year (see Figure 3-16). Results of a field pyrheliometer 
calibration during clear-sky comparisons using an absolute cavity are shown in Figure3-17. 
When finally deployed in the field, factors such as accuracy of solar tracking, data logger 
accuracy, cleanliness of the windows, and frequency of recalibration may contribute more 
sources of uncertainty resulting in typical uncertainties of ± 2.0% to ± 2.5% (or greater) in DNI 
measurements from a very carefully conducted, high-quality measurement system (Reda 2011). 

 
Figure 3-18. Pyrheliometer calibration results summarizing (left) Rs compared to SZA and (right) 

compard to local standard time. Image from NREL 

 
The pyrheliometer responsivity (Rsi) is computed as the microvolts (µV) per W/m2 at each 
measurement comparison (i) typically made at 1-second to 60-second intervals with a reference 
or transfer standard radiometer (typically an electrically self-calibrating absolute cavity 
radiometer traceable to the WRR) and the output signal from the pyrheliometer under 
calibration: 

 Rsi = Vi/REFi (3-4) 

where  

                                                 
6 See measurement uncertainty terminology. 
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• Vi = pyrheliometer output voltage (µV )  

• REFi = reference DNI (W/m2). 

Applying the GUM procedure to the pyrheliometer calibration, Table 3-6 summarizes the 
uncertainties for a 95% confidence interval for the individual pyrheliometer responsivity results. 

Table 3-6. Estimated Pyrheliometer 
Calibration Uncertainties in Rsi 

Type A Error Source Ustd (%) Type B Error Source Ustd (%) 

WRR transfer 0.200 WRR uncertainty (UE, k = 2) 0.3 

Absolute cavity responses to 
environmental conditions 

0.013 Absolute cavity bias 
responses to environmental 
conditions 

0.013 

Data logger precision 0.0025 Data logger bias (9µV/10mV) 0.09 

Pyrheliometer detector 
temperature response 

0.25 Pyrheliometer detector 
temperature response 

0.25 

Pyrheliometer detector linearity 0.100 Event-to-event temperature 
bias (10ºC) 

0.125 

Solar tracker alignment 
variations 

0.125 Solar tracker alignment bias 0.125 

Pyrheliometer window spectral 
transmittance 

0.500 Pyrheliometer window 
spectral transmittance 

0.5 

Electromagnetic interference and 
electromagnetic field 

0.005 Electromagnetic interference 
and electromagnetic field 

0.005 

Total Type Aa 0.615 Total Type Ba 0.665 
a Summed under quadrature 

 
The combined uncertainty (UC) can be determined from the above standard uncertainties for 
Type A and Type B errors: 

 UC = [(0.615)2 + (0.665)2]1/2 = 0.906% (3-5) 

The expanded uncertainty (UE) with a 95% confidence interval can therefore be computed based 
on the effective degrees of freedom (greater than 100 for pyrheliometer calibrations that can be 
based on more than 1,000 measurements throughout the course of a day) and a coverage factor, 
k, of 2.0: 

 UE = 2 · UC = 1.8% (3-6) 

Therefore, the expanded uncertainty of the calibration for each Rsi is ± 1.8%. 

With this in mind, the reader can review the radiometer calibration certificate issued for each 
instrument and contact the manufacturer for additional information about the calibration process. 
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NREL assigns a single value for Rsi, Rs, corresponding to SZA = 45 degrees and values of Rs 
for each 2-degree interval in the range of SZA encountered during the outdoor calibrations.7  

3.3.4 Estimating the Uncertainty of DNI Field Measurements  
Accounting for this calibration uncertainty and other sources of measurement errors (condition of 
radiometer optics and the relevant issues similar to those considered for the calibration 
measurement uncertainty estimates), the expanded measurement uncertainty for subhourly DNI 
measurements is ± 2.5% for a well-maintained measurement station equipped with a thermopile-
based pyrheliometer and ± 5% for a photodiode-based RSR (Wilcox and Myers 2008). Table 3-7 
identifies the uncertainty sources used for the overall uncertainty analysis of DNI measurements 
from two types of radiometers. 

Table 3-7. Example of Estimated Direct-Normal Subhourly Measurement Uncertainties (%) 

Type A Error Source Ustd (%) 
TPa 

Ustd (%) 
Sib Type B Error Source Ustd (%) 

TPa 
Ustd (%) 

Sib 

Fossilizedc calibration 
error 

0.615 0.615 Fossilized calibration 
error 

0.665 0.665 

Data logger precision 
(± 50 µV/10 mV)d 

0.5 0.5 Data logger bias  
(1.7 µV/10 mV)d 

0.02 0.02 

Si detector cosine 
response 

0 0.5 Si detector cosine 
response 

0 1.5 

Pyrheliometer detector 
temperature response 
(D20°C) 

0.25 0.05 Detector temperature 
response 

0.25 0.05 

Pyrheliometer detector 
linearity 

0.100 0.10 Day-to-day tempera-
ture bias (10ºC) 

0.125 0.10 

Solar alignment varia-
tions (tracker or shade 
band) and pyranometer 
level for Si 

0.2 0.10 Solar alignment varia-
tions (tracker or shade 
band) and pyranometer 
level for Si 

0.200 0.20 

Pyrheliometer window 
spectral transmittance 

0.1 1.0 Pyrheliometer window 
spectral transmittance 

0.5 1.0 

Optical cleanliness 
(blockage) 

 

0.2 
 

0.1 
Optical cleanliness 
(blockage) 

0.25 0.1 

Electromagnetic 
interference and 
electromagnetic field 

0.005 0.005 Electromagnetic 
interference and 
electromagnetic field 

0.005 0.005 

TOTAL Type Ae 0.889 1.382 TOTAL Type Bf 0.934 1.938 
a Thermopile detector used for a pyrheliometer 
b Silicon diode pyranometer detector used for an RSR 
c Fossilized indicates that the calibration uncertainty is always carried forward into the field. 
d Typical manufacturer specified accuracy: ± 0.05% of full-scale range (typically 50 mV) -25°C to 
50°C; assume 10-mV signal, so ± 50 microvolts (µV ) (0.5%) with 1.67 µV resolution (0.02%) 

e, f Summed under quadrature 

                                                 
7 See www.nrel.gov/solar_radiation for additional information.  

http://www.nrel.gov/solar_radiation
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The combined uncertainty, UC, can be determined from the above standard uncertainties for 
Type A and Type B errors for each detector type: 

 UCTP = [(0.889)2 + (0.934)2]1/2 = 1.29% (3-7) 

 UCSi = [(1.382)2 + (1.938)2]1/2 = 2.38%  (3-8) 

The UE with a 95% confidence interval can therefore be computed based on the effective 
degrees of freedom (greater than 100 for pyrheliometer measurements that can be based on 
several thousand measurements throughout the course of a day) and a coverage factor, k, of 2.0: 

 UEtp = 2 · UCTP = 2.58%  (3-9) 

 UESi = 2 · UCSi = 4.76%  (3-10) 

The expanded uncertainty estimate of DNI from a thermopile pyrheliometer or silicon 
photodiode-based RSR is ± 2.6% and ± 4.76%, respectively. Measured data should be examined 
carefully and periodically checked against field reference radiometers to identify conditions that 
exceed these limits, in which case problems with the radiometers, data acquisition systems, or 
other supporting equipment could be affecting the measurements. A year-long intercomparison 
of several models of commercially available and reference absolute cavity pyrheliometers 
conducted by the WMO in conjunction with laboratories at NREL and the National Oceanic and 
Atmospheric Administration (NOAA), located in Boulder, Colorado, produced results consistent 
with the estimations developed here (Michalsky et al. 2011). 

3.3.4.1 Uncertainty in Pyranometer Calibrations and Global Horizontal Irradiation 
Measurements 

The WRR is also the reference for the calibration of pyranometers used to measure GHI and 
DHI. Physically, it is assumed that the hemispherical detectors in a pyranometer respond only to 
the vertical component of the DNIVertical based on the SZA at the time of measurement: 

 DNIVertical = DNI ∙ Cos (SZA) (3-11) 

The pyranometer detector is assumed to have no response to the horizontal component of 
DNIHorizontal: 

 DNIHorizontal = DNI ∙ Sin (SZA) (3-12) 

Using the relationship described in Section 2.4 for GHI, DNI, DHI, and SZA:  

 GHI = DNI ∙ Cos (SZA) + DHI (3-13) 

we can compute the DNI as: 

 DNI = (GHI – DHI)/Cos (SZA) (3-14) 
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The GHI and DHI are measured by unshaded and shaded pyranometers, respectively (see 
Chapter 3). Thus, given a reference DNI and DHI, we can use the above relationship to calibrate 
a single pyranometer. 

By alternately shading and unshading the detector surface of a pyranometer on a clear day, the 
difference in output signal between shaded (Vshade) and unshaded (Vunshade) conditions can be 
compared to the reference DNI measurement to compute the Rs of the pyranometer under test: 

 Rs (V/W/m2) = [(Vunshade – Vshade)/Cos (SZA)]/DNI (3-15) 

This is called the shade/unshade calibration technique, and it is described in more detail by Reda 
et al. (2003). 

Alternatively, the radiometer can be calibrated by using a reference pyrheliometer to measure 
DNI and a continuously shaded pyranometer (calibrated using the above shade/unshade 
technique) to compute a reference GHI. The Rs of pyranometer(s) under calibration can be 
computed from their unshaded signal (Vunshade): 

 Rs (V/W/m2) = Vunshade/(DNI ∙ cos (SZA) + DHI) (3-16) 

Computing the Rs in this way is called the component summation calibration technique. 

The shade/unshade and component summation techniques, when conducted throughout a range 
of SZA, demonstrate pyranometers—which by design have differing non-Lambertian, or 
nonideal response—as a function of SZA (or incidence angle) of the DNI. The differences in Rs 
as a function of SZA are like fingerprints or signatures for each individual (not only type) of 
pyranometer detector. Figure 3-18 shows that variations of pyranometer Rs can be symmetrical 
with respect to solar noon, or highly skewed, depending on the mechanical alignment of the 
pyranometer detector, detector surface structure, and detector absorber material properties. 
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Figure 3-19. Pyranometer calibration results summarizing Rs compared to (left) SZA and (right) 

local standard time. Image from Daryl Myers, NREL 

 
Typical calibration uncertainty for any sensor with respect to a WRR reference cavity radiometer 
is approximately 0.5% at any one very narrow range (± 2 degrees to ± 5 degrees) of zenith angle 
(Reda et al. 2008). Over a wide range of zenith angles (0 degrees to 85 degrees), the Rs can vary 
by 10 to 20 times that over a narrow range, or from ± 3% to ± 10% or even more. These effects 
then need to be combined with the field measurement influences, the same as with the DNI 
measurement uncertainty estimate (e.g., including pyranometer installation, data logger accuracy, 
cleanliness, spectral dependency, and temperature sensitivity). 

These larger high-zenith-angle-related uncertainties occur throughout parts of the day (morning 
and afternoon) when the available solar resource is much smaller than typical midday resources, 
when the zenith angles are smaller. Because the maximum elevation (minimum zenith) angles 
vary throughout the seasons, the uncertainty in hemispherical radiation data will vary as well. 

Even in the good measurement regime of midday, hemispherical field measurement uncertainty 
is typically two to three times that of direct-beam measurements, or ± 4% to ± 5%, throughout a 
year, primarily because of these seasonal uncertainty variations. Better instrumentation design 
and careful applications of correction factors as a function of zenith angles are ways to improve 
(reduce) the uncertainty in GHI measurements. The alternative is to use high-quality DNI and 
DHI measurements using a tracking shading disk/ball to compute GHI. The measurement 
uncertainties for GHI then approach that of the DNI (± 2%) for clear-sky measurements. 

Figure 3-19 shows the calibration traceability for pyrheliometers used to measure DNI and 
pyranometers used to measure GHI or DHI and indicates how measurement uncertainties 
accumulate from calibration to field deployment. Broad arrow boxes show accumulated 
uncertainty at each phase of the process. The resulting field deployment uncertainties for 
pyrheliometers used for measuring DNI is ± 2.0%. Measurement uncertainties for pyranometers 



49 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

used to measure GHI in the field range from ± 3.0% for SZA between 30 degrees and 60 degrees 
and up to ± 7% to ± 10% for SZA greater than 60 degrees. 

The calibration and assessment of calibration and field uncertainties for pyrheliometers and 
pyranometers is described in detail in national and international standards (ASTM G167-05, 
ASTME 816-05, ASTM E824-05, ASTM G183-05, ISO 9059, ISO 90846, ISO 9847). 

 
Figure3-20. Calibration traceability and accumulation of measurement uncertainty for 

pyrheliometers and pyranometers (coverage factor k = 2). Image from NREL 

 
3.3.4.2 Model Estimate Uncertainties 
Empirical models derived from measured data correlations with independent parameters 
inherently carry measurement uncertainty embedded in the ultimate model accuracy. Models 
based on 2%, 5%, or 10% accurate measurements can be no more accurate than the data used to 
generate the model. Typically, scatter about model regression lines increases the random 
component of uncertainty further. Models based on first principles of physics and radiation 
transfer cannot be validated or verified to a level of accuracy greater than that of the 
measurements. Beware of claims of high accuracy in models or measurements without a 
thoroughly documented uncertainty analysis (Gueymard and Myers 2009). 
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3.4 Measurement Station Design Considerations 
To collect useful DNI resource data, the successful design and implementation of a solar 
resource measurement station or network of stations requires careful consideration of the 
elements summarized in this subsection. 

3.4.1 Location 
The primary purpose of setting up a solar resource measurement station is to collect data that 
allow an analyst to accurately characterize the solar irradiance and relevant meteorological 
parameters at a particular location. Ideally, the instruments would be collocated with the targeted 
analysis area, but in some cases separation distances may be tolerated depending on the 
complexities of local climate and terrain variations. Lower variability in terrain and climate 
generally translates to lower variability in the solar resource over larger spatial scales. These 
effects should be well understood before determining the final location of a measurement station. 
The proximity to the target area must also be weighed against operational factors, such as 
availability of power, communications, and access for maintenance, as discussed below. 
Considerations should also include the possible effects of local sources of pollution or dust—for 
example, traffic on a nearby dirt road that could degrade the measurements. 

When measurement stations are constructed in metropolitan, industrial areas or even electrical 
substations, consideration should be given to possible sources of radio frequency signals that 
could impart unwanted noise in sensors or cables. For example, the same high building that 
would provide an attractive unobstructed site for solar measurements may also be the ideal 
location for radio or television broadcast towers or some other communication apparatus. Such 
sites should also be investigated for harmful effects of electromagnetic radiation on the health of 
station maintenance workers. 

Instrument selection is a fundamental consideration, because measurements with greater 
accuracy will better reflect the actual resource; however, instrument placement is also an 
important consideration. If nearby objects—such as trees or buildings—shade the instruments for 
some period of time during the day, the resulting measurement will not truly represent the 
available solar resource. Distant objects—especially mountains—may be legitimate obstructions, 
as the shadows they cast are likely to produce an influence beyond the area local to the 
instruments. Conversely, nearby objects can potentially reflect solar radiation onto the 
instruments, likewise resulting in measurements that do not represent the local natural 
environment. Such cases could include a nearby wall, window, or other highly reflective object. 
The best practice is to locate instruments away from any objects that are in view of the 
instrument detector. The recommendations from WMO (2008) for radiation and all other 
measurands apply. 

The easiest way to determine the quality of solar access is to scan the horizon for a full 360 
degrees of azimuth and note the elevation of any objects protruding into the sky above the local 
horizon. Look for buildings, trees, antennae, power poles, and even power lines. Most locations 
will have some obstructions, but whether they will be significant in the context of the necessary 
measurements must be determined. Generally, pyranometers are very insensitive to sky blockage 
within approximately 5 degrees elevation above the horizon. Pyrheliometers, however, are more 
sensitive, because objects can completely block the DNI, depending on the daily path of the sun 
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throughout the year. The amount of blockage time each day will be related the object’s width and 
height above the horizon. The number of blockage days each year will depend on where along 
the horizon the object lies. To be a concern, the object must be in the area of the sun near sunrise 
or sunset, the time and azimuth of which vary throughout the year. For most of the horizon, 
objects blocking the sky will not be a factor, because the sun rises in a limited range in the east 
and sets likewise in the west during sunset (e.g., at 40° N latitude, sunrise near the summer 
solstice occurs at approximately 60° from true north). However, the farther north in latitude the 
site is located, the greater the range of these sunrise and sunset areas of interest. A solar horizon 
map, or even a sketch of obstructions by elevation and azimuth, will help determine the areas 
where horizon objects will affect the measurement (see Figure 2-5). 

Considerations for locating a station should also include environmental concerns, such as 
wildlife habitat, migratory paths, drainage, and antiquities or archeological areas. 

3.4.2 Station Security and Accessibility 
Tens of thousands or even hundreds of thousands of dollars can comprise measurement stations. 
Although this equipment is typically not the target of thieves seeking property for resale, it is still 
subject to theft and should be protected. Vandalism may be even more likely than theft. Unlike 
thieves, vandals typically care less about what they are vandalizing and more about their ability 
to destroy property with high value to its owner. The less visible and accessible the station is to 
the public, the less likely it will be the target of theft or vandalism. For example, instruments 
mounted on a rooftop are less likely to attract unwanted attention than those unprotected beside a 
highway. Lack of visibility is the best defense against vandalism, including damage from bullets 
or rocks. 

Security fences should be used if people or animals are likely to intrude. Fencing should be at 
least 6 ft tall, preferably with barbed wire, and fitted with locking gates in high-profile areas 
where intrusion attempts are likely. Less elaborate fences may suffice in areas that are generally 
secure and where only the curious need be discouraged from meddling with the equipment. In 
remote venues with few human hazards, cattle fence paneling (approximately 4 ft tall) may be 
advisable if large animals roam the area. The fencing should be sturdy enough to withstand the 
weight of a large animal that may rub against the compound or otherwise be pushed or fall 
against the fence. It may not be possible to keep smaller animals out of the station compound, 
and precautions should be taken to ensure that the equipment, cabling, supports, etc., can 
withstand encounters with these animals. Coyotes, rodents, rabbits, birds, and other wildlife may 
be able to move through the wires or jump over or burrow under fences. In particular, signal 
cabling between modules or sensors at or near ground level is prone to gnawing by rodents and 
should be run through a protective conduit or buried. Any buried cable should either be specified 
for use underground or run through conduit approved for underground use. Underground utilities 
and other objects should be investigated before postholes are dug or anchors sunk. 

If fences are used, they must be considered as a potential obstacle that can shade the instruments 
or reflect radiation to the instruments. The radiometers should be positioned above the fence line 
(including barbed wire), if only by a few millimeters, to prevent any shading of the sensor. This 
assumes that the pyranometer is mounted in a horizontal position and that the pyrheliometer is 
installed in a solar tracker. POA pyranometers should have an unobstructed view of the ground 
and sky in front of them. In any case, the recommendations from WMO (2008) concerning 
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obstacles have to be followed. If nearby towers are unavoidable, the station should be positioned 
between the tower and the equator (e.g., to the south of the tower in the northern hemisphere) to 
minimize shading. The radiometers should be positioned as far as possible from the tower— at 
least several meters—so the tower blocks as little of the sky as possible (radiometer signal cables 
should be shorter than 50 m to avoid losses caused by line resistance). The tower should also be 
painted a neutral gray to minimize strong reflections that could contaminate the solar 
measurement. These guidelines assume that the tower is part of the measurement station proper 
and that the site operator has control of the placement or modification of the tower. Absent that 
control, the radiometers should be moved as far as possible from the tower. 

Access to the equipment must also be part of a station construction plan. Because routine 
maintenance is a primary factor affecting data quality, provisions must be made for reasonable 
and easy access to the instruments. Factors here could include ease of access to cross-locked 
property, well-maintained all-weather roads, and roof access that might be controlled by other 
departments. Safety must also be a consideration. Locations that present hazardous conditions—
such as rooftops without railings or that require access using unanchored ladders—must be 
avoided. 

3.4.3 Power Requirements 
Ongoing measurements require a reliable source of electrical power to minimize system 
downtime from power outages. In some areas, power from the utility grid is reliable, and 
downtime is measured in minutes per year. In other areas, multiple daily power interruptions are 
routine. Depending on the tolerance of the required analysis to missing data, precautions should 
be taken to ensure that gaps in the data stream from power outages do not seriously affect the 
results. The most common and cost-effective bridge for power outages is an uninterruptible 
power supply. An uninterruptible power supply can also filter out unwanted or harmful line 
voltage fluctuations that can occur for a variety of reasons. It has internal storage batteries that 
are used as a source of power in the event of an alternating current (AC) power interruption. 
When the AC power is interrupted, internal circuitry makes an almost seamless switch from grid-
connected AC power to AC provided through an inverter connected to the battery bank. When 
power is restored, the uninterruptible power supply recharges the internal battery from the AC 
line power. Power loss is detected quickly, as is switching to battery, and it is measured in 
milliseconds or partial line cycles. Some equipment may be particularly susceptible to even 
millisecond power interruptions during switching and should be identified through trial and error 
to avert unexpected downtime despite use of the uninterruptible power supply. 

The uninterruptible power supply is sized according to: 

• Operating capacity—amount of power in watts; it can continuously supply either on or 
off grid-connected AC power 

• Longevity of battery power—how long the battery can last under anticipated maximum 
load. 

Users should estimate the longest possible power outage and size the uninterruptible power 
supply for the maximum load of attached devices and the maximum period of battery capacity. 
Batteries should be tested regularly to ensure that the device can still operate per design 
specifications. Internal battery test functions sometimes report errors only when batteries are 
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near complete failure and not when performance has degraded. A timed full-power-off test 
should be conducted periodically to ensure that the uninterruptible power supply will provide 
backup power for the time needed to prevent measurement system failure. 

In remote locations where utility power is not available, local power generation should be 
devised. Options for on-site electrical power generation include PV or small wind turbine 
systems (or both) and gasoline- or diesel-fueled generators with battery storage. The renewable 
energy systems should be sized to provide enough energy for the maximum continuous load and 
power through several days of cloudy weather when solar generation would be minimal. This 
would include sites prone to persistent ground fog. The sizing is a function of the extremes of the 
solar climate and should consider the longest gap during reduced generation, the shortest 
recharge period available after discharge, and the generation capacity and storage necessary to 
provide uninterrupted power for the target location. Some oversizing is necessary to 
accommodate degradation of PV panels and battery storage, and consideration should be given to 
ambient temperature, which affects the ability of a battery to deliver energy. Sizing calculators 
are available to help with this effort.8  

Equipment should be specified and tested for self-power-on capability in the event of a power 
outage. This ensures that when power is restored, the equipment will automatically resume 
measurements and logging without operator intervention. This is an important consideration for 
remote locations where considerable downtime might occur before personnel could be 
dispatched to restart a system. 

3.4.4 Grounding and Shielding 
Station equipment should be protected against lightning strikes and shielded from radio 
frequency interference that could damage equipment or reduce the validity of the measurements. 
Several books are available that describe techniques for grounding and shielding low-voltage 
signal cables (see, for example, Morrison [1998]). The reader is urged to consult available 
references or seek expert technical advice during the design of a solar resource measurement 
system. 

In general, the following steps should be taken when designing and constructing a measurement 
station: 

1. Use a single-point ground (e.g., a copper rod driven several feet into the ground) for all 
signal ground connections to prevent ground loops that can introduce noise or biases in 
the measurements. 

2. Use twisted pair, shielded cables for low-voltage measurements connected as double- 
ended measurements at the data logger. Double-ended measurements require separate 
logger channels for + and – signal input conductors. These inputs do not share a common 
signal ground and therefore significantly reduce the possibilities for electrical noise 
introduced in the signal cable. 

                                                 
8 See http://pvwatts.nrel.gov/.  

http://pvwatts.nrel.gov/
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3. Physically isolate low-voltage sensor cables from nearby sources of electrical noise, such 
as power cables. (Do not run signal cables in the same bundle or conduit as AC power 
cables.) If a power cable must be near a signal cable, always position the two at right 
angles to each other. This limited contact will minimize the possibility of induced 
voltages in the signal cable. Also, although this case is not recommended, the data logger 
settings should be selected to avoid signal noise (integration time of the voltage 
measurement adjusted to AC frequency). 

4. Metal structures such as masts and tripods should be connected to the ground to provide 
an easy path to the ground in the event of a lightning strike. This will help protect 
sensitive instruments. Electronic equipment often has a special ground lug and associated 
internal protection to help protect against stray voltages from lighting strikes. These 
should be connected with a heavy gauge wire to ground (12 American wire gauge or 
larger). Metal oxide varistors, avalanche diodes, or gas tubes can be used to protect signal 
cables from electrical surges such as lightning. These devices must be replaced 
periodically to maintain effectiveness. The replacement frequency is a function of the 
accumulated energy dissipated by the unit. 

 

3.4.5 Data Acquisition 
Data logging equipment should have performance specifications that do not degrade the potential 
measurement of the radiometer signals (e.g., analog-to-digital conversion of low-level direct 
current voltages, temperature response coefficients, and environmental limits of operation). 

Most radiometers output a voltage, current, or resistance that is measured by a voltmeter, 
ammeter, or ohmmeter. The measured value is subsequently converted to engineering units 
through a multiplier and/or an offset determined by calibration to a recognized measurement 
standard. Data loggers should be chosen so that the measurement signal is consistent with the 
uncertainty of the sensor—for example, a much smaller uncertainty, perhaps 3 to 10 times 
smaller than the estimated measurement uncertainty associated with the radiometer. This is the 
accuracy ratio between the data logger and the radiometer. For example, typical specifications 
for a good data logger measuring a 10-mV output from the radiometer accurate to 1%, or 0.1 mV 
(100 µV), are on the order of total uncertainty (accuracy) of better than (less than) 0.1% of 
reading (or full scale) for the parameter in question, which would be 0.010 mV, or 10 µV. The 
logger should also have a range that can measure the voltage or resistance at near full scale to 
best capture the resolution of the data. For example, a sensor with a full-scale output of 10 mV 
should be connected to a logger with a range that is at least but not below 10 mV. A logger with 
a 1-V range may be able to measure 10 mV, but not with the desired precision. Most modern 
data loggers have several range selections, allowing the user to optimize the match for each 
instrument. Because of the nature of solar radiation, radiometers (e.g., pyranometers used for 
GHI measurements) can sometimes produce 200% or more of clear-sky readings under certain 
passing cloud conditions, and the logger range should be set to prevent over-ranging during 
unusual sky conditions. 

Some radiometers use amplifiers to raise the instrument output to a higher range to better satisfy 
signal range matching requirements; however, such amplifiers require power and will add some 
uncertainty to the data with nonlinearity, noise, temperature dependence, or instability. High-
quality amplifiers may minimize these effects and allow a reasonable trade-off between logger 
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cost and data accuracy. Calibrations must be made of these radiometer systems by including the 
pyranometer or pyrheliometer and its uniquely associated amplifier. 

The logging equipment should also have environmental specifications that are compatible with 
the environment where the equipment will be used. Loggers used inside an environmentally 
controlled building could have less stringent environmental performance specifications than one 
mounted outside in a desert or arctic environment. Equipment enclosures can create an internal 
environment several degrees above ambient air temperature because of solar heating (absorption 
by the enclosure materials), heat generated by electronic devices mounted inside, and lack of 
ventilation to help purge heat. Vent plugs are available to provide ventilation openings and 
prevent insects and water from entering the enclosure (e.g., Gore Tex vent plugs). 

The sampling frequency and time statistics of the solar resource data should be determined from 
the desired data analysis requirements. For example, monthly means, daily totals, hourly, minute, 
or sub-1-minute data records can be useful. Data loggers can generally be configured to produce 
output of instantaneous or integrated values at any reasonable time period consistent with the 
radiometer time-response characteristics. The design should consider the current requirements 
and, if convenient and practical, future needs for additional analyses. A high-temporal-resolution 
data-logging scheme can be down sampled or integrated to longer time periods than the other 
way around. For example, transforming hourly data to 1-minute data with any certainty and 
accuracy is impossible if a specific data time series must be reproduced. Data logging equipment, 
data transfer mechanisms, and data storage can generally handle 1-minute data resolution, and 
this time realm should be considered the fundamental resolution in the data logger. Because most 
applications address the solar energy available over time, integrated data of sub-minute samples 
within the data logger (e.g., 1-second signal sampling) is a common method of data output 
regardless of the final data resolution required by the analysis. The output of instantaneous 
samples is much less likely to represent the available energy and should be avoided when 
configuring a data logger. If the size of a measured data set is a defining issue (e.g., limited data 
communications throughput), the user can determine the lowest temporal resolution necessary 
for the application and optimize the data collection accordingly. 

3.4.6 Data Communications 
Provisions should be made for transferring data from the data logger to a data processing facility. 
This is the basis for adequately frequent data control. Historically, data have been captured, 
transferred, and processed in various ways. The manual transfer of data recorded on strip charts 
physically carried or shipped from the observing station to a data center has been replaced by 
advances in electronics and telecommunications that allow remote data collection from nearly 
any location. 

A telephone modem link that uses conventional dial-up phone lines to connect stations to data 
centers can now be replaced with cellular telephone technology, obviating the need for a physical 
connection between logger and phone line. The cell phone network is configured to provide 
virtual Internet links between a measurement station and the data center. Satellite up- and 
downlinks are also available for data transfers in areas that are not served by either wire- or cell-
based phone service. Within the area of an observing station, short-distance wireless 
communications such as Wi-Fi connectivity may be useful to minimize the need for long cables 
between radiometers and data loggers. 
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To prevent data loss in case of connection problems, the memory of the data logger should be 
selected appropriately. Memory extensions are available for many data loggers. Especially for 
high-temporal-resolution or many measurement channels, a direct connection between the logger 
and a PC with Internet connection should be considered, too. 

3.4.7 O&M 
Proper O&M practices are essential for acquiring accurate solar resource measurements. As 
addressed in this subsection, several elements in a chain form a quality system. Collectively, 
these elements produce accurate and reliable solar resource data: station location, measurement 
system design, equipment installation, data acquisition, and O&M practices. Proper O&M 
requires long-term consistency, attention to detail, and a thorough appreciation for the 
importance of preventative and corrective maintenance of sensitive equipment. 

Calibrations are performed with clean instrument optics and a carefully aligned detector. To 
properly apply the calibration factor, the instrument should be kept in the same condition during 
field measurements. To maintain the calibration relationship between irradiance and radiometer 
output, proper cleaning and other routine maintenance is necessary. The maintenance process 
includes: 

• Checking the alignment of the detector. Pyrheliometers must be accurately aligned with the 
solar disk for accurate DNI measurements. Pyranometer detectors must be horizontal for 
GHI and DHI measurements and accurately aligned with a flat-plate collector for POA 
measurements. The radiometer orientation should be checked periodically using the 
features described in Chapter 3. (In some cases, a carefully leveled pyranometer may 
produce GHI readings that are not symmetrical around solar noon under clear skies. If this 
cannot be attributed to any change in atmospheric composition (aerosols or water vapor), or 
optical asymmetries can be verified under strict laboratory conditions, the optical axis of 
the detector is probably not exactly vertical. This is a manufacturing defect. 

• Cleaning the instrument optics. To properly measure the solar intensity, no contaminant 
should block or reduce the amount of sunshine falling on the detector. The outdoor 
environment provides many sources of such contamination, such as dust, precipitation, 
dew, plant matter, insects, and bird droppings. The sensors should be cleaned regularly to 
minimize the effect of contaminants on the measurements. Depending on the local 
conditions, this can require daily maintenance of unventilated or otherwise protected 
radiometers. 

• Documenting the condition of the radiometer. For analysts to understand limitations of 
the data, conditions that affect the measurement must be documented. This includes 
substandard measurement conditions, but it is just as important to document proper 
operations to add credibility to the data set. Observations and notes provide a critical 
record of conditions that positively and negatively affect data quality. 

• Documenting the environment. As a consistency check, note the sky and weather 
conditions at the time of maintenance when interpreting data from the radiometer, 
including measurements with unusual values. 

• Documenting the infrastructure. The measurement station as a whole should be examined 
for general robustness. Any defects should be noted and corrected. 
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Maintenance frequency depends on prevailing conditions that soil the instruments. This includes 
dust, rain, snow, birds, and insects. It is also depends on instrument type. Radiometer designs 
based on optical diffusers (such as LI-COR LI-200) are less susceptible to dust contamination 
than are instruments with clear optics (Myers et al. 2002). This may be caused by, in part, the 
area subject to soiling (e.g., a larger dome versus a smaller diffuser). Also, fine dust on the 
surface of a diffuser can become an integral part of the diffuser, and it may lessen the impact of 
the dust on the diffuser transmittance compared to that on a precision-ground optical dome. 
Soiling of the windowed or domed radiometers can quickly affect the measurement and increase 
by many-fold the measurement uncertainty. This is especially relevant for pyrheliometers 
(Geuder 2006). As described earlier, a pyranometer in a ventilator can reduce this risk of 
contamination; thus, the frequency and cost of maintenance should be considerations in 
instrument specification.  

If a remote site will be difficult to maintain for extended periods, a higher class windowed 
instrument might not be optimal, despite its potential for better measurements. The cost of 
maintenance for a remote site may dominate the estimated cost of setting up and operating a 
station. This aspect should be anticipated when planning a measurement campaign. 

A conservative maintenance schedule will support the credibility of the measurement data set 
and provide the analyst a base of justification when assigning confidence intervals for the data. 

Daily inspection should be scheduled for instruments with clear optics, and twice monthly 
inspections should be scheduled for diffuser instruments. More frequent spot inspections should 
be conducted after significant weather events (e.g., dust storms, heavy rainfall, rainfall during 
periods with high optical depth, and storms). Radiometer optics may not necessarily soil within a 
24-hour period, but the effects of soiling can best be mitigated with frequent inspection. 

Radiometers should be carefully cleaned at each inspection, even if soiling appears minimal. 
Cleaning is generally a very short procedure, and it removes the possibility of differing 
interpretations of the need to clean among different technicians. With such a procedure in place, 
the analyst can claim with confidence that the instruments were kept clean according to the 
documented schedule. 

Maintenance at remote measurement sites away from institutional or corporate employment 
centers will require finding a qualified person nearby who can perform the necessary 
maintenance duties. The qualifications for maintenance are generally nontechnical, but they 
require someone with the interest and disposition to reliably complete the tasks. As a rule, 
compensating these people for time and vehicle mileage—rather than seeking volunteers— 
becomes a worthwhile investment in the long run, because it sets up a firm contractual 
commitment to perform all necessary maintenance duties. Absent that formal relationship, it can 
become difficult to assert the need for reliable and regular attention. 

All O&M should be carefully documented with log sheets or preferably with electronic databases 
that contain enough information to reveal problems and solutions or that assert that the 
instruments were in good form when inspected. The exact times of the maintenance events 
should be noted, not estimations. For example, a button connected to the data logger that is 
pressed at the beginning and at the end of an inspection is recommended. The O&M information 
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enables an analyst to identify potentially bad data, and it provides important documentation to 
determine and defend the overall quality of the measurements. 

3.5 Data Quality Control, Data Correction, Data Quality Assessment, 
and Metadata 

The data quality is generally established when the measurement is taken. Little can be done after 
the fact to improve fundamental quality. For example, a poorly maintained station with dirty 
optics or misaligned instruments will produce data with presumed (or even apparent) errors, and 
the magnitude of those errors is not likely to be discernable until days or weeks later. There is no 
way to systematically reduce the uncertainty of such a measurement, and one can only guess at 
which corrections to make. In this context, data quality control involves a well-defined 
supervisory process by which station operators are confident that, when a measurement is taken 
with unattended instruments, the instruments are in a state that produces data of known quality. 
This process largely encompasses the calibration, inspection, and maintenance procedures 
discussed earlier, along with log sheets and other items that document the condition of the 
station. It also includes a critical inspection or assessment of the data to help detect problems not 
evident from physical inspection of the instruments. 

Data quality assessment is a method by which data quality can be judged based on criteria for a 
particular application. Several particular errors of meteorological data can be detected by 
automatic screening algorithms. Corresponding tests are documented in a number of 
publications, including Long and Dutton (2002); Maxwell, Wilcox, and Rymes (1993); Wilcox 
and Cormack (2011); Journée and Bertrand (2011); and Espinar et al. (2011). Data can be 
compared to certain physical limits that have been determined to be reasonable, with redundant 
or complementary measurements, or with physical or empirical models, all of which will provide 
some degree of independent measure for a quality judgment; however, dependent on how strict 
the screening parameters and their corresponding values are chosen, too many or too few events 
may be detected. Moreover, the values of some parameters are site dependent according to 
corresponding weather conditions; therefore, the results of the automatic screening always 
demand a manually check of an expert to ensure their validity. Also, further influences on the 
data potentially known by the supervisor have to be included as comments or flags. 

The interpretation and application of solar resource measurements depend greatly on the efforts 
to record and include metadata relevant to the observations. This includes not only site location; 
local horizon survey; data acquisition system(s); input signal channel assignments; radiometer 
types, models, serial numbers, calibration histories, and installation schemes; but also 
information on eventual post processing of the data and maintenance records. An example of 
online metadata is available from NREL’s Solar Radiation Research Laboratory.9 Such metadata 
should be included with the archiving of the measured solar resource data. For example, 
influences that have to be documented may included damaged or misaligned sensors, 
maintenance works on the instruments, detection of soiled sensors and subsequent sensor 
cleaning, obstructed sensors, and temporarily erroneous calibration constants in the program 
code. These events are frequently not detected automatically or sometimes not even detectable 

                                                 
9 See www.nrel.gov/midc/srrl_bms.  

http://www.nrel.gov/midc/srrl_bms
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by automatic quality-control screening tools. Hence, manual checks are required, as discussed in 
Geuder et al. (2014). However, automatic tests such as those presented in the following contain 
important and valuable information and should be performed. 

One common method for evaluating DNI, GHI, and DHI quality is a three-component coupling 
test. As described in Chapter 2, the measurements of DNI and DHI can be combined 
mathematically to derive a global measurement, as described in Equation 2-4. When all three 
components are measured, measurement redundancy is apparent, because any one component 
can be derived from the other two; thus, in the context of quality assurance, expected values for 
each component can be calculated from the other two. This method helps quantify the relative 
error among the three components, although it does not necessarily determine strictly which 
measurement—or measurements—are in error. However, operational knowledge of the 
instruments and trackers can provide valuable insight into likely errors. For example, a 
misaligned tracker would cause either a low DNI or high diffuse measurement (low DNI from a 
poorly aligned pyrheliometer or high diffuse from a poorly aligned shading disk). With this 
knowledge, and an observation of trends in the magnitude of flagging, a data quality expert can 
quickly spot common operational errors. The measurement of the three redundant components—
rather than only a single measurement or two components of specific interest—is a significant 
and important tool for data quality analysis, and it should be strongly considered when 
specifying instrumentation for a station. 

For example, the SERI QC software (Maxwell et al. 1993) produces flags that can be plotted (see 
Figure 3-14). The process generates a data quality value, or flag, for each data point based upon a 
normalization process involving the dimensionless parameters—clearness or cloudiness index, 
(Kt), effective diffuse horizontal transmittance (Kd), and direct beam transmittance (Kn)—
derived from the corresponding ETR. The plot on the left indicates more severe flags from 
among the three components, plotted here by day of month (y axis) and hour of day (x axis), the 
least error in the dark blue, and the greatest error in red. Further, the other three plots correspond 
respectively to normalized GHI, DNI, and DHI measurements, providing the analyst with 
additional information to pinpoint the measurement causing the error. 
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Figure 3-21. Example of SERI quality-control data quality-assurance reporting. Image from NREL 

 
In the case shown in Figure 3-21, the three-component data (GHI, DNI, and DHI) were 
submitted to the SERI QC software, which performs the three-component coupling test in the 
realm of the clearness index, or Kt, Kn, and Kd (see Chapter 2). This K-space value normalizes 
the solar irradiance values to remove the effect of the SZA. Thus, in K-space 

 Kt = Kn + Kd (3-17) 

Or, rearranged, the deviation from this equation of component coupling can be quantified as the 
residual from 

 Ε = Kt – Kn – Kd (3-18) 

Perfect component coupling would result in ε = 0, and any nonzero value indicates some 
disagreement among the instruments; however, this method does not reveal which component or 
components are in error, only that there is some disagreement. Further, instrument errors in 
opposing directions could result in a false zero value. 

Despite these ambiguities, a knowledgeable analyst can confidently detect measurement errors in 
most typical measurement scenarios. In the case of Figure 3-21, for each minute data record 
containing the three components, the residual was plotted as a quality flag, with red color flags 
(left column) indicating a greater deviation or apparent error. The actual Kt, Kn, and Kd values 
are also plotted in the next three columns; the red roughly correlates to higher irradiance, and the 



61 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

dark blue represents the least clear. Data from an RSI consist of GHI, DNI, and DHI and are 
derived from a single pyranometer. To some extent, this limitation can be mitigated by including 
a secondary unshaded (GHI) pyranometer on the RSI to provide some redundant measurements. 
This enhancement is a relatively low-cost method of adding confidence in the measurements and 
can be included in a two- or three-component quality-assessment test. 

The three-component methods described here are generally more reliable than a simple clear-sky 
data analysis in which some conclusions are drawn based on modeled or other expected values of 
the clear-sky data. Significant day-to-day variations in cloudless, clear-sky data can occur 
because of variations in atmospheric constituents, such as aerosols or water vapor. Thus, such 
variation can make it difficult to draw conclusions about possible instrument error without 
specific information regarding other critical atmospheric components. 

A successful quality-control process requires elements of quality assessment and feedback. 
Figure 3-22 depicts a quality-assurance cycle that couples data acquisition with quality 
assessment and feedback. 

 
Figure 3-22. Information flow of a quality-assurance cycle. Image from NREL  

 
As shown in Figure 3-22, the information flows from data acquisition to quality assessment, 
where some criteria are used to establish data quality. The results of the quality assessment are 
analyzed and formed into feedback that goes back to the data acquisition module. The activities 
in the boxes can take several forms. For example, quality assessment could be the daily site 
inspection, and the analysis and feedback could be a simple procedure that corrects equipment 
malfunctions. Or the quality assessment could be a weekly summary of data flags, and the 
analysis provides a determination of specific instrument error that is transmitted back to 
maintenance personnel with instructions to correct deficiencies or further troubleshoot problems. 

The faster the cycle runs, the sooner errors will be detected, and the fewer bad data will be 
collected during failure modes. Conversely, if the site is inspected infrequently, the chances 



62 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

increase that a large portion of the data set would be contaminated with substandard equipment. 
More than one quality-assurance cycle can—and likely will—run at any time, each with a 
different period and emphasis, as noted above: daily inspection, weekly quality reports, monthly 
summaries, etc. 

One practical aspect of this cycle is the importance of positive feedback—a regular report back 
to site personnel of error conditions and of high-quality operations or data sets exceeding quality 
thresholds. This positively reinforces a job well done and keeps site operators cognizant that data 
are being used and that their efforts are an integral part of an ongoing process. 

The quality-assurance cycle is a deliberate part of the quality-control process, and it should be 
well defined and funded to maintain a consistency of data quality over time. After the quality of 
the data is determined, corresponding conclusions have to be made for the further use of the data. 
In every case, the quality-assurance has to be included in the data set as metadata. In some cases, 
the quality of the data can even be improved based on the quality assurance. For example, data 
gaps from one sensor can be filled with the redundant data. Gap filling is a complex topic that is 
not described in detail here. To calculate daily, monthly, or yearly sums, gap filling will nearly 
always be necessary, and it is recommended that the reader considers various publications 
concerning the topic for this type of correction.  

Another systematic error that might be corrected concerns the calibration. If the recalibration of a 
sensor shows a noticeable change relative to the calibration constant that was used sligtly before 
the recalibration, the data might be reprocessed with a corrected calibration constant. For sun 
photometers, this kind of post processing is known from the AERONET Level 2 data (Holben 
1998). A noticed change of the calibration constant is assumed to be linear in time, and the data 
between the two calibrations is then reprocessed with a time series of linearly changing 
calibration constants. 

Also, the systematic effects of soiling on the resource assessment can be reduced by some extent. 
This requires that an eventual change of the DNI caused by the sensor cleaning is documented. 
One example for the correction of DNI data can be found in Geuder (2006); however, such a 
correction can result only in accurate data if the effect of the soiling is small at all times (< 1 %). 
The availability of rough correction methods does not affect the requirement frequently clean the 
instruments. 
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4 Modeling Solar Radiation—Current Practices 
4.1 Introduction 
High-quality solar resource assessment accelerates technology deployment by making a positive 
impact on decision making and reducing uncertainty in investment decisions. GHI and/or DNI 
are the quantities of interest for resource assessment and characterization at a particular location. 
Surface-based measurements of DNI and GHI can be made only on a relatively sparse network, 
given the costs of O&M. Nevertheless, observations from ground networks have been used in 
conjunction with models to create maps of surface solar radiation. Another option is to use 
information from geostationary satellites to estimate GHI and DNI at the surface (Perez and 
Ineichen 2002; Pinker and Laszlo 1992). Because geostationary satellite coverage is available at 
regular intervals on a fixed-grid surface, radiation can be available for the entire globe (at least 
between approximately -60 degrees and +60 degrees latitudes) at temporal and spatial resolutions 
representative of a particular satellite. 

Solar radiation models that use only ground-measured input parameters were used in the past 
when satellite or weather-model-derived data was not available. Examples of such models are 
briefly mentioned in this paragraph for historic reasons. One popular historic model type is based 
on data from the Campbell Stokes sunshine duration recorder (see Section 3.2.4). The monthly 
mean GHI is derived using a regression fit to the number of clear hours measured by the 
sunshine recorder’s burn marks. Then regression coefficients are calculated using GHI 
measurements. There are digital sunshine recorders available that can be used to provide input to 
these models. The exact method to calculate GHI using sunshine recorder information is 
empirical and therefore specific to each geographical area and not standardized. Moreover, the 
meteorological services of some countries, such as the United States and Canada, have stopped 
measuring sunshine duration because of the limited quality and significance of this measurement, 
which is not standardized and varies from country to country. In the absence of surface radiation 
measurements, estimates of surface radiation can also be made using meteorological ground 
measurements such as cloud cover, temperature, visibility, and water vapor in a radiative transfer 
model (Marion and Wilcox 1994). Methods have been developed over the years and have been 
used to create earlier versions of the NSRDB, for instance (George et al. 2007). The METSTAT 
model uses information about cloud cover, water vapor, ozone, and aerosol optical depth (AOD) 
to develop empirical correlations to compute atmospheric transmittance extinction during both 
clear- and cloudy-sky conditions. 

This chapter contains an introduction to satellite-based models, information about currently 
operational models that provide surface radiation data for current or recent periods, a summary 
of radiative transfer models used in the operational models, and a discussion of uncertainty in 
solar-based resource assessment. 

4.2 Introduction to Satellite-Based Models 
The goal of satellite-based irradiance models is to use observed information about TOA 
radiances and albedos to calculate GHI and DNI. During the last decades, satellite-based 
retrievals of GHI have been used—for example, for climate studies (Justus, Paris, and Tarpley 
1986). These methods can be primarily divided empirical and physical methods (Pinker, Frouin, 
and Li 1995; Schmetz 1989; Myers 2013). The empirical methods are based on developing 
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relationships between satellite- and ground-based observations; the physical methods estimate 
surface radiation directly from satellite information using retrieval schemes to determine the 
atmospheric properties important to radiative transfer. Empirical methods generally produce only 
GHI and require additional models to calculate DNI from GHI. 

4.2.1 Geostationary Satellites 
Geostationary satellites near the equator provide continuous global coverage. (Measurements are 
usable up to 66 degrees north and south latitudes because of the Earth’s curvature; see Figure 4-
1). As an example of satellite coverage, the Geostationary Operational Environmental Satellite 
(GOES) series covers North and South America every 3 hours and the Northern Hemisphere, 
including the United States, every 30 minutes. Two GOES satellites (GOES-East, or GOES-12; 
and GOES-West, or GOES-11) operate concurrently and provide 30-minute coverage for the 
entire United States. The imager instrument on the current GOES satellites measures at 5 
wavelength bands, or spectral regions.  

The visible channel (0.64 µm) has a nominal 1-km resolution; the infrared channels (3.9 µm, 6.5 
µm, 10.7 µm, and 12 µm) have 4-km resolution. The next (future) series of GOES satellites that 
are expected in 2015 will have a new instrument called the Advanced Baseline Imager, with 5-
minute coverage at 1-km resolution for 16 channels (6 in the visible and near-infrared).  

The European Organization for the Exploitation of Meteorological Satellites Union owns the 
METEOSAT series of satellites that covers Europe and Africa as well as the Indian Ocean. The 
visible and infrared imager on the METEOSAT first-generation satellites (up to METEOSAT 7) 
had 3 channels in the visible, water vapor, and infrared. The visible channel produced 8-km nadir 
resolution; the infrared channel’s nadir resolution was 5 km. Repetition frequency is imagery 
every 30 minutes. The Spin Enhance Visible and Infrared Imager on the METEOSAT Second 
Generation (MSG) satellites (METEOSAT 8 onward) provide satellite imagery every 15 minutes 
at a nominal 3-km resolution for 11 channels (Schmetz et al. 2002). The 12th channel, a high-
resolution visible channel, has a nadir resolution of 1 km.  

The Japanese Multifunctional Transport Satellite covers East Asia and the Western Pacific at a 4-
km spatial and 30-minute temporal resolution taking measurement in 5 channels. It replaced the 
GMS series of satellites, which has been in operation since 1977.  
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Figure 4-1. The location of the current geostationary satellites that provide coverage around the 

globe. Image from NOAA 

 
4.2.2 Polar-Orbiting Satellites 
Polar-orbiting satellites are also used to continuously sense the Earth and retrieve cloud 
properties and solar radiation at the surface. An example of one such instruments is the 
Advanced Very High Resolution Radiometer on the NOAA series of polar-orbiting platforms. 
Another recent example is the Moderate Resolution Imaging Spectroradiometer instrument on 
NASA’s Aqua and Terra satellites. Although polar orbiters provide global coverage, their 
temporal coverage is limited because of their orbit, in which they essentially cover a particular 
location only once a day at the lower latitudes. 

4.2.3 Satellite-Based Empirical Methods 
Satellite-based empirical methods consider a pseudo-linear correlation between the atmospheric 
transmittance and the measurement sensed by the satellite. These methods (correlations) have 
been used to create regression relationships between what is simultaneously observed by a 
satellite and ground-based instruments (Cano et al. 1986; Hay, Hanson, and Hanson 1978; Justus, 
Paris, and Tarpley 1986; Tarpley 1979). Hay, Hanson, and Hanson (1978) created a regression 
model that relates atmospheric transmittance to the ratio of incoming to outgoing radiation at 
TOA. The transmittance is then used to compute GHI.  

In this method, the coefficients of the regression model change significantly based on location 
and need to be trained with surface observations (Nunez 1990) to produce accurate results. The 
Tarpley method also used the well-known relation between surface radiation, the TOA radiation 
(both upwelling and downwelling), and atmospheric transmittance to create three separate 
regression equations. The regression equations were classified based on sky conditions labeled as 
clear, partly cloudy, and cloudy and used accordingly. 

4.2.4 Satellite-Based Physical Models 
Physical models generally use radiative transfer theory to directly estimate surface radiation 
based on first principles. These can be classified as either broadband or spectral, depending on 
whether the radiative transfer calculations involve a single broadband calculation or multiple 
calculations in different wavelength bands. 
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The National Renewable Energy Laboratory (NREL), University of Wisconsin, and NOAA 
collaborated to produce the integration of the Satellite Algorithm for Shortwave Radiation 
Budget (SASRAB) products into NREL’s 4-km by 4-km gridded NSRDB (2014 update). 
Gridded NSRDB uses a two-stage scheme to first retrieve cloud properties and then use those 
properties in the SASRAB model to calculate surface radiation (Pinker and Laszlo 1992). The 
goal of the project is to create a half-hourly, 4-km gridded DNI, GHI, and DHI product of known 
quality and accuracy for use in the NSRDB. 

The broadband method of Gautier, Diak, and Masse (1980) used thresholds depending on 
multiple days of satellite pixel measurements to determine clear and cloudy skies. Separate clear-
sky and cloudy-sky models were then used to compute surface DNI and GHI. The clear-sky 
model initially included water vapor and Rayleigh scattering but progressively added ozone 
(Diak and Gautier 1983) and aerosols (Gautier and Frouin 1984). Assuming that attenuation 
caused by the atmosphere does not vary from clear to cloudy conditions, Dedieu, Deschamps, 
and Kerr (1987) created a method that combines the impact of clouds and the atmosphere. This 
method again uses a time series of images to determine clear-sky for computing surface albedo. 
Darnell et al. (1988) created a parameterized model to calculate surface radiation using a product 
of the TOA insolation, atmospheric transmittance, and cloud transmittance. Developed with data 
from polar-orbiting satellites, this model used collocated surface and satellite measurements to 
create relationships between cloud transmittance and planetary albedo. 

Möser and Raschke (1983) created a model based on the premise that GHI is related to fractional 
cloud cover and used it with METEOSAT data to estimate solar radiation over Europe (Möser 
and Raschke 1984). The fractional sky cover was determined to be a function of satellite 
measurements in the visible channel. This method uses radiative transfer modeling 
(Kerschegens, Pilz, and Raschke 1978) to determine the clear- and overcast-sky boundaries. 
Stuhlmann, Rieland, amd Raschke (1990) have since enhanced the model to include elevation 
dependence and additional constituents as well as multiple reflections in the all-sky model.  

An important spectral model developed by Pinker and Ewing (1985) divided the solar spectrum 
into 12 intervals and applied the Delta-Eddington radiative transfer (Joseph, Wiscombe, and 
Weinman 1976) to a three-layer atmosphere. The primary input to the model is cloud optical 
depth that can be provided from various sources. This model was enhanced by Pinker and Laszlo 
(1992) and used in conjunction with cloud information from the International Satellite Cloud 
Climatology Project (ISCCP) (Schiffer and Rossow 1983). Another physical method involves the 
use of satellite information from multiple channels to derive cloud properties (Stowe, Davis, and 
McClain 1999) and then computes DNI and GHI using the cloud properties in a radiative transfer 
model. This method, called CLOUDS, was originally developed for the polar-orbiting satellite 
data. It uses the advanced, very high-resolution radiometer (AVHRR) instrument on NOAA 
satellites (Stowe, Davis, and McClain 1999) and has been modified and enhanced to obtain cloud 
properties from the GOES satellites (Heidinger 2003; Pavlonis, Heidinger, and Uttal 2005). The 
cloud information is then input to the Pinker and Laszlo (1992) model to produce surface 
radiation. 

Physical models are computationally more intensive than empirical and semiempirical (see next 
section) models. An advantage of physical models is that they can use additional channels from 
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new satellites (such as MSG) to improve cloud property retrieval and, hence, surface radiation 
modeling. 

4.2.5 Semiempirical Models 
Semiempirical models are so classified because of their hybrid approach to retrieving surface 
radiation from satellite observations in which normalized satellite-observed reflectance is related 
to GHI at the surface. 

Cloud-cover indices that use visible satellite imagery are first created with budget equations 
between TOA and surface radiation. Those indices are then used to modify clear-sky GHI and 
estimate GHI at the ground consistent with the cloud scene. DNI can then be derived from GHI 
and the clear-sky DNI. 

The Cano model (Cano et al. 1986) was modified by Diabate et al. (1988) and Moussu et al. 
(1989), who used METEOSAT data to develop the HELIOSAT model to create solar resource. 
This data is available commercially from Mines ParisTech (see Chapter 5). Models such as those 
developed by Perez et al. (2002) also evolved from Cano et al. (1986) and are currently being 
used to estimate GHI and DNI. For the United States, data sets created using the Perez et al. 
(2002) model for the period between 1998 and 2009 are available for free from NREL. 

4.3 Currently Available Operational Models 
The following sections present examples of currently available operational models. Only a 
selection of models is found. Further public, scientific, and commercial operational models exist 
and might be of interest for the resource analysis. 

4.3.1 NSRDB (2014 Update) 
To fulfill the needs of solar energy technologies, NREL in collaboration with the University of 
Wisconsin and NOAA produced a physics-based satellite-derived solar radiation data set as part 
of the NSRDB. The satellite-based data are available every 30 minutes for 4-km-resolution 
pixels. The data fields include a solar radiation and meteorological data set. The current release 
of the data set encompasses the years from 2005 to 2012. 

The model uses a two-stage scheme that retrieves cloud properties and uses those properties in 
the SASRAB model to calculate surface radiation (Pinker and Laszlo 1992). The product initially 
generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-
x) algorithms (Heidinger et al. 2014) while calculating the GHI and DHI using SASRAB; 
however, the existing SASRAB model for solar resource assessment has been shown to 
underestimate DNI and GHI during clear-sky conditions and especially during low SZA 
conditions. This is because the SASRAB algorithm requires a background reflectance field to 
calculate solar insolation for the current image. This is generated by recording the second-darkest 
value for each image pixel from the previous 28 days. This is a visible channel measurement that 
has been shown to be adversely affected by the Earth’s surface reflectivity. Thus, desert 
environments, snow, or any high-albedo conditions that existed at the time of the background 
calibration force the model to assume it was actually caused by high atmospheric aerosols. This 
means that the SASRAB clear-sky shortwave radiation results will often be underestimated 
compared to the actual surface radiation. At the time of this algorithm’s development, in the 
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early 1980s, aerosol content over land via satellite imagery did not exist; however, with satellite 
aerosol data now available, NREL used this opportunity to correct the current and historical 
SASRAB data (Sengupta et al. 2014a and Sengupta et al. 2014b). The time-series irradiance data 
for each pixel were quality-checked to ensure that they were within acceptable physical limits, 
gaps were filled, and the UTC time stamp was shifted to local standard time. Finally, the GOES 
East and West data sets were blended to create a contiguous national data set of irradiance data 
for the period from 2005 to 2012. 

4.3.2 NASA/Global Energy and Water Cycle Experiment Surface Radiation 
Budget 

To serve the needs of the World Climate Research Programme, Whitlock et al. (1995) developed 
a global Surface Radiation Budget (SRB) data set using cloud information from the ISCCP C1 
data set at a 250-km by 250-km (approximately 2.5 degrees by 2.5 degrees) resolution every 3 
hours (Schiffer and Rossow 1983; Zhang et al. 2004). Information from the ISCCP-C1 data set is 
used as an input into the Pinker and Laszlo (1992) model and the Darnell et al. (1988) model. 

The currently available version is the NASA/ Global Energy and Water Cycle Experiment SRB 
Release-3.0 data sets that contain global 3-hourly, daily, monthly/3-hourly, and monthly 
averages of surface longwave and shortwave radiative parameters on a 1-degree by 1-degree 
grid. Primary inputs to the models include: 

• Visible and infrared radiances and cloud and surface properties inferred from ISCCP 
pixel-level (DX) data 

• Temperature and moisture profiles from the GEOS-4 reanalysis product obtained from the 
NASA Global Modeling and Assimilation Office 

• Column ozone amounts constituted from a total ozone mapping spectrometer and TIROS 
Operational Vertical Sounder archives and the Stratospheric Monitoring-group’s Ozone 
Blended Analysis, an assimilation product from NOAA’s Climate Prediction Center. 

The SRB data set is available from multiple sources. The Surface meteorology and Solar Energy 
(SSE) Web site provide SRB data in a version that is more applicable to renewable energy.10 
SRB data sets are also available from the Clouds and the Earth’s Radiant Energy System 
project.11 Additionally, the Fast Longwave and Shortwave Radiative Fluxes (FLASHFlux) 
project makes real-time SRB data.12 Both projects use global observations from Clouds and the 
Earth’s Radiant Energy System and moderate-resolution imaging spectroradiometer instruments. 
Table 4-1 shows the estimated bias and RMS error between measured WMO Baseline Surface 
Radiation Network (BSRN) monthly averages of the three solar radiation components. The 
NASA SSE accuracy and methodology are documented on the SSE Web site. 

 

                                                 
10 See http://eosweb.larc.nasa.gov/sse/.   
11 See https://eosweb.larc.nasa.gov/project/ceres/ceres_table.   
12 See https://eosweb.larc.nasa.gov/project/ceres/flashflux-l2_table.   

http://eosweb.larc.nasa.gov/sse/
https://eosweb.larc.nasa.gov/project/ceres/ceres_table
https://eosweb.larc.nasa.gov/project/ceres/flashflux-l2_table
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Table 4-1. Regression Analysis of NASA SSE Compared to BSRN Bias and RMS Error 
for Monthly Averaged Values from July 1983 through June 200613 

Parameter Region Bias (%) RMS (%) 

GHI Global 
60° poleward 
60° equatorward 

-.01 
-1.18 
0.29 

10.25 
34.37 

8.71 

DHI Global 
60° poleward 
60° equatorward 

7.49 
11.29 

6.86 

29.34 
54.14 
22.78 

DNI Global 
60° poleward 
60° equatorward 

-4.06 
-15.66 

2.40 

22.73 
33.12 
20.93 

 
4.3.3 DLR-ISIS Model 
Similar to the NASA SSE data sets discussed in Section 4.3.2, the DLR-ISIS data set14 is a 21-
year DNI and GHI data set (280 km by 280 km every 3 hours) based on the ISCCP cloud product 
covering the period from July 1983 through December 2004. The cloud products are used in a 2-
stream radiative transfer model (Kylling, Stamnes, and Tsay 1995) to compute DNI and GHI. The 
correlated-k method from Kato et al. (1999) is used to compute atmospheric absorption in the 
solar spectrum. Scattering and absorption in water clouds are analyzed using the 
parameterization of Hu and Stamnes (1993); ice cloud properties are obtained from Yang et al. 
(2000) and Key et al. (2002). Fixed effective radii of 10 µm and 30 µm are used for water and 
ice clouds, respectively. The radiative transfer algorithm and parameterizations are included in 
the radiative transfer library libRadtran (Mayer and Kylling 2005).15  

The complete method for creating the DLR-ISIS data set using the ISCCP cloud products and the 
libRadtran library is outlined in Lohmann et al. (2006). The cloud data used for the derivation of 
the DLR-ISIS data set are taken from the ISCCP FD (global radiative flux data product) input 
data set (Zhang et al. 2004), which is based on ISCCP D1 cloud data. (See the ISCCP homepage 
for more information about cloud data sets.16) It provides 3-hour cloud observations on a 280-km 
by 280-km equal area grid. The whole data set consists of 6,596 grid boxes on 72 latitude steps 
of 2.5 degrees. This grid is maintained for the DLR-ISIS data set. 

ISCCP differentiates among 15 cloud types. The classification includes three intervals of optical 
thickness in three cloud levels: low, middle, and high clouds. Low and middle cloud types are 
further divided into water and ice clouds; high clouds are always ice clouds. 

For DLR-ISIS, optical thickness, cloud top pressure, and cloud phase given in the ISCCP data set 
are processed to generate clouds for the radiative transfer calculations. One radiative transfer 

                                                 
13 From https://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi?+s06%23s06.  
14 See http://www.pa.op.dlr.de/ISIS/.   
15 See www.libradtran.org/doku.php.  
16 See http://isccp.giss.nasa.gov.   

https://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi?+s06%23s06
http://www.pa.op.dlr.de/ISIS/
http://www.libradtran.org/doku.php
http://isccp.giss.nasa.gov/
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calculation is carried out for each occurring cloud type assuming 100% cloud coverage, plus one 
calculation for clear sky. For the final result, irradiances are weighted with the cloud amount for 
each cloud type and for clear sky, respectively.  

4.3.4 HelioClim 
The HELIOSAT method based on Cano et al. (1986) is used to produce the HelioClim database 
(Rigollier et al. 2004) that uses METEOSTAT data.17 HelioClim covers Europe, Africa, the 
Mediterranean Basin, the Atlantic Ocean, and part of the Indian Ocean. Mines ParisTech 
Armines produced data that can be accessed through the SODA Service.18 Mines ParisTech 
produced the method HELIOSAT-2 in November 2002, partly with the support of the European 
Commission; HELIOSAT-4 is being developed by Mines ParisTech and the DLR. Table 4-2 
shows representative differences through comparisons of HelioClim modeled data and ground 
measurements in Europe and Africa between 1994 and 1997 (Lefèvre, Wald, and Diabate 2007). 

Table 4-2. HelioClim Compared to Ground Bias and RMS Error 
for Monthly Averaged Values from 1994 through 1997 

Parameter Region Bias (%) RMS (%) 
 

GHI 
Europe 
Africa 

-9% to -1% 
-3% to +4% 

25% 
18% 

 
4.3.5 Solar Energy Mining 
Solar Energy Mining (SOLEMI) is a service from DLR that provides irradiance data 
commercially and for scientific purposes. The data are based on global atmospheric data sets 
(aerosol, water vapor, ozone) from different earth observation sources and climate models as 
well as cloud data from Meteosat. GHI and DNI data sets are available every hour at a 2.5-km 
resolution and cover Europe and Africa (1991–2012) and Asia (1999–2012). SOLEMI combines 
the established HELIOSAT method described by Cano et al. (1986) with schemes from 
Schillings et al. (2003a) and Rigollier, Lefèvre, and Wald (2004).  

 

4.3.6 MACC-RAD Services 
Within the radiation subproject (MACC-RAD), existing historical and daily updated databases 
HelioClim-3 and SOLEMI for monitoring incoming surface solar irradiance were further 
developed. The new service is called HelioClim-4, and it is jointly provided by DLR and Mines 
ParisTech Armines. Data are made available both via the Copernicus portal19 and the SODA 
service.20 The European Earth observation programme Copernicus aims to provide 
environmental information to support policy makers, public authorities, and both public and 
commercial users. Data are provided under the Copernicus data policy, which includes free 
availability for any use, including commercial use. The preoperational atmosphere service of 
Copernicus is currently provided through the FP7 projects MACC and MACC-II (Monitoring 
Atmospheric Composition and Climate). MACC combines state-of-the-art atmospheric modeling 
                                                 
17 See http://www.soda-is.com/eng/helioclim/heliosat.html. 
18 See http://www.soda-is.com/eng/index.html.  
19 See http://www.gmes-atmosphere.eu. 
20 See http://www.soda-pro.com. 

http://www.soda-is.com/eng/helioclim/heliosat.html
http://www.soda-is.com/eng/index.html
http://www.gmes-atmosphere.eu/
http://www.soda-pro.com/
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on aerosols with Earth observation data to provide information services covering European air 
quality, global atmospheric composition, climate, and ulttraviolet and solar energy. 

The user’s guide (Espinar et al. 2014) describes the data, methods, and operations used to deliver 
time series of solar radiation available at ground surface. The new HELIOSAT-4 method is 
based on the decoupling solution proposed by Oumbe et al. (2014). In the case of an infinite 
plane-parallel single- and double-layered cloud, the solar irradiance at ground level computed by 
a radiative transfer model can be approximated by the product of the irradiance during a clear 
atmosphere, McClear model (Lefèvre et al. 2013; see section 4.6.4) and a modification factor 
because of cloud properties and ground albedo only (McCloud) (Espinar et al. 2014). 

Table 4-3. Summary of Data Used in MACC-RAD 

Variable Data Sources Temporal Resolution Spatial Resolution 

Aerosols properties and type MACC 3 h 1.125 degrees 

Cloud properties and type APOLLO (DLR) 15 min 3 km to 10 km 

Total column content in ozone  MACC 3 h 1.125 degrees 

Total column content in water vapor  MACC 3 h 1.125 degrees 

Ground albedo Mines ParisTech Climatology of 
monthly values 

6 km 

 
Within McCloud, the clear-sky index, Kc, is computed by the means of a lookup table approach 
with SZA, cloud optical depth, and ground albedo as input parameters. Four types of clouds are 
discriminated: water or mixed-phase clouds at low, medium, and high altitudes and optically thin 
ice clouds. Cloud information from the Meteosat Second Generation (MSG) satellites are 
provided by the APOLLO (AVHRR Processing scheme Over clouds, Land and Ocean; Kriebel, 
Saunders, and Gesell 1989; Kriebel et al. 2003) algorithm. APOLLO provides quantities related 
to cloud for each pixel (3 km at nadir) and every 15 minutes. Among these quantities are a mask 
(cloud-free/cloudy) and the type of the cloud (low, medium, high, thin). Cloud coverage—i.e., 
the fraction of a pixel covered by a cloud, expressed in percent—is derived for each type of 
cloud separately. Table 4-3 shows an overview of the data used in MACC-RAD. 

 

4.3.7 Perez/Clean Power Research 
The Perez et al. (2002) method (herein referred to as the Perez State University of New York 
[Perez SUNY] model) for computing GHI and DNI is based on the concept that atmospheric 
transmittance is directly proportional to the TOA planetary albedo (Schmetz 1989). This method 
is being applied to the GOES satellites and is currently available from Clean Power Research.21 
The concept of using satellite-based measurements of radiance assumes that the visible imagery 
demonstrates cloud cover for high levels of brightness and lower levels for more clear-sky 
conditions (e.g., dark ground cover). The method is outlined below, and readers are referred to 
Perez et al. (2002) for additional details. The method: 

  
                                                 
21 See www.cleanpower.com.  

http://www.cleanpower.com/
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• Normalizes the satellite measurement with the SZA to remove effects of solar geometry 

• Creates a dynamic range of satellite measurements using time-series information for each 
pixel 

• Calculates a “cloud index” for every pixel in an image by scaling with the dynamic range 
for the corresponding pixel that was created in the previous step 

• Uses the SOLIS model (Mueller et al. 2004) to create a GHI map for clear-sky (GHIclr) 

• Calculates GHI by scaling GHIclr with the cloud index 

• Calculates clear-sky DNI (DNIclr) and DNI from GHIclr and GHI, respectively, using 
the DIRINT model (Perez et al. 1992) 

• Calculates clear-sky DNI from the Bird (see Section 4.6.1) model (DNIclr, Bird) using 
water vapor, ozone, and AODs as inputs (DNIclr, Bird is estimated to be more accurate 
than DNIclr.) 

• Scales DNIclr, Bird with the ratio of DNI and DNIclr from Step 6 to calculate the DNI. 

The above steps are used to calculate DNI and GHI from satellite visible imagery. Some 
additional corrections and ancillary data are used to make the product more accurate. These 
include: 

• Using snow cover information from the National Snow and Ice Data Center to reset the 
lower bound of the dynamic range 

• Using surface elevation from the U.S. Geological Survey’s digital elevation models 
(DEMs) to adjust for atmospheric optical depth based on elevation 

• Adjusting the lower bound of the dynamic range for high AM effects 

• Adjusting for specular reflection caused by the angle between the sun and the satellite 

• Adjusting the cloud index to a clearness index using a nonlinear conversion process and 
applying the clearness index to GHI calculations. 

4.3.8 3TIER Solar Data Set 
3TIER developed a global solar radiation data set for both GHI and DNI. It follows the method 
of Perez et al. (2002) using independently developed algorithms. This 12-plus-years data set is 
available for global locations at a 3-km resolution from 1997.22  

4.3.9 SolarGIS 
A new model for the high-performance calculation of global and direct irradiances has been 
implemented for the region covered by the Meteosat, GOES, and MTSAT satellites covering 
land between latitudes 60° N and 50° S. The model philosophy is based on the principles of the 
HELIOSAT-2 calculation scheme (Hammer et al. 2003) and the model by Perez et al. (2002), 
and it is implemented to operationally process satellite data at a full spatial and temporal 
resolution. 

                                                 
22 See http://www.3tier.com/static/ttcms/us/documents/education/3TIER-Solar-Satellite-Data-Introduction.pdf.  

http://www.3tier.com/static/ttcms/us/documents/education/3TIER-Solar-Satellite-Data-Introduction.pdf
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The model was developed by GeoModel Solar (Cebecauer, Suri, and Perez 2010). The 
enhancements include: 

• Multispectral satellite information to improve classification of snow/land/cloud signals 

• A new algorithm to find lower bound values preserving diurnal variability 

• Implementation of backscatter correction 

• Variable upper bound for dynamic range and cloud index calculations 

• Simplified SOLIS clear-sky model 

• Downscaling with a high-resolution DEM to include local variability of solar irradiance. 
 

In particular, the following algorithms are implemented: 

• Satellite model: modified version of HELIOSAT by Perez et al. (2002), adapted for 
multispectral MSG data, with improvements of snow classification and cloud index 
determination 

• DHI: Perez model, Perez et al. (1987) 

• DNI: DirIndex, Perez et al. (1992 2002) 

• Snow detection: Dürr and Zelenka (2009) 

• Clear-sky model: broadband simplified Solis (Ineichen 2008) 

• Terrain disaggregation: Ruiz-Arias et al. (2010). 

4.3.10 NOAA Global Surface Insolation Project 
NOAA is currently running a physical model that produces GHI at an approximate 4-km 
resolution for the northern hemisphere.23 Its output is called the GOES Surface Insolation 
Product. The GOES Surface Isolation Product algorithm follows a two-step process and 

1. Uses multichannel GOES satellite information and ancillary data sets, including snow 
cover, surface albedo, and digital elevation to retrieve cloud properties (Heidinger 2003) 

2. Uses the cloud properties from Step 1 to produce GHI (Pinker and Laszlo 1992; Laszlo et 
al. 2008). 

Although the GOES Surface Isolation Product was primarily developed to estimate sea surface 
temperature for coral bleaching and numerical weather prediction (NWP) applications, it can be 
tailored to CSP needs, because DNI is currently produced, but not saved, in the official product 
(Laszlo, personal communication). 

4.3.11 EnMetSol Model 
The EnMetSol method is a technique for determining the global radiation at ground by 
using data from a geostationary satellite (Beyer et al. 1996; Hammer et al. 2003). It is 

                                                 
23 See http://www.ospo.noaa.gov/Products/land/gsip/index_v3.html. 

http://www.ospo.noaa.gov/Products/land/gsip/index_v3.html
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used in combination with a clear-sky model to evaluate the three irradiance parameters: 
global horizontal, direct irradiance, and diffuse irradiance. The key parameter of the 
method is the cloud index n, which is estimated from the satellite measurements and 
related to the transmissivity of the atmosphere. The method is used for Meteosat first- 
and second-generation and GOES data.  

The method 

• Is performed on historical data, near real time data, and used for short term forecasting 
(intraday)  

• Normalizes the satellite measurement with the SZA to remove the effects of solar 
geometry 

• Calculates a “cloud index” for every pixel in an image by applying the HELIOSAT 
method 

• Uses the clear-sky model of Dumortier (Fontoynont et al. 1998, Dumortier 1998) with the 
Remund (2009) METEONORM HR high-resolution database for the turbidity input. This 
model is applied when calculating near-real-time and forecasts of global horizontal and 
tilted irradiance as input for PV power predictions. The all-sky DHI is calculated with a 
diffuse fraction model (Lorenz 2007).  

• Uses the SOLIS model (Mueller et al. 2004) in combination with monthly averages of 
AOD (Kinne et al. 2005) and water vapour content (Kalnay 1996) as input parameters to 
calculate DNI or spectrally resolved solar irradiance. The DNI for all sky conditions is 
calculated with a beam fraction model (Hammer et al. 2009). 

4.4 Clear-Sky Models Used in Operation Models 
 

4.4.1 Bird Clear-Sky Model 
The Bird clear-sky model (Bird and Hulstrom 1981) is a broadband algorithm that produces 
estimates of clear-sky direct beam, hemispherical diffuse, and total hemispherical solar radiation 
on a horizontal surface. The model is based on parameterization built using radiative transfer 
computations and is composed of simple algebraic expressions. Model results are expected to 
agree within ± 10% with detailed high-resolution spectral and broadband physics based radiative 
transfer models. The model can be used at 1-min or better resolutions, and it can duly accept 
inputs at that frequency if available. However, in the absence of high temporal resolution input 
parameters, climatological or annual average values could be used as inputs to the model. The 
Bird clear-sky model also forms the basis of the clear-sky part of METSTAT, with only minor 
modifications. The performance of these two models has been assessed rigorously and compared 
to other algorithms (Badescu et al. 2012; Gueymard 1993, 2003a, 2003b, and 2012; Gueymard 
and Myers 2008; Gueymard and Ruiz-Arias 2015). 

4.4.2 ESRA Model  
The ESRA model is another example of a clear-sky model. Used in the HELIOSAT-2 model that 
retrieves GHI from satellites, this model computes DNI, GHI, and DHI using Rayleigh optical 
depth, elevation, and the Linke turbidity factor as its inputs. The performance of the model has 
been evaluated at various locations (Badescu et al. 2012, Gueymard and Myers 2008, Gueymard 
2012, and Gueymard and Ruiz-Arias 2015). 
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4.4.3 SOLIS Model 
The SOLIS model (Mueller et al. 2004) is a simple clear-sky model that can calculate DNI, GHI, 
and diffuse radiation based on an approximation to the Lambert-Beer relation for computing 
DNI: 

 I = I0e(-M*τ)  (4-1) 

where  

• τ is the atmospheric optical depth at a specific (monochromatic) wavelength  

• M is the optical AM 

• I0 is the TOA direct radiation 

• I is the DNI at the surface for a monochromatic wavelength. 

This equation is modified to account for slant paths and adapted for GHI and diffuse. The 
modified Lambert-Beer relation (Mueller et al. 2004) is 

 I(SZA) = I0e (-τ0 / Cosa (SZA) (4.2) 

where 

• I(SZA) is the irradiance associated with the empirical factor, a, used to compute the DNI, 
DHI, or GHI (a = 1 for DNI) 

• τ0 is the vertical broadband optical depth of the atmosphere 

• SZA is the solar zenith angle. 

The Beer-Lambert equation is a simple relationship, because it accounts for monochromatic DNI 
and is impacted only by atmospheric attenuation. On the other hand, DHI and GHI are 
broadband values that contain energy that is scattered by the atmosphere. The empirical factor is 
used as an adjustment factor to compute GHI and DHI, as explained in Mueller et al. (2004). 

4.4.4 McClear Model 
The fast clear-sky model called McClear implements a fully physical modeling replacing 
empirical relations or simpler models used before. It exploits the recent results on aerosol 
properties and total column content in water vapor and ozone produced by the MACC project. 
McClear irradiances were compared to 1-minute measurements made under clear-sky conditions 
at several BSRN stations representative of various climates. For global, respectively direct 
irradiance, the correlation coefficients range from 0.95 to 0.99, resp. 0.86 to 0.99. The bias 
ranges from 14 to 25 W/m², resp. 49 to +33 W/m². The root mean square error (RMSE) ranges 
from 20 W/m² (3% of the mean observed irradiance) to 36 W/m² (5%), resp. 33 W/m² (5%) to 64 
W/m² (10%). 

4.4.5 REST2 Model 
The high-performance REST2 model is based on transmittance parameterizations over two 
distinct spectral bands separated at 0.7 µm. The model’s development and its benchmarking are 
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described by Gueymard (2008). REST2 has been thoroughly validated and compared to other 
irradiance models under varied atmospheric conditions, including extremely high aerosol loads 
(Gueymard 2012, Gueymard 2014, Gueymard and Myers 2008, Gueymard and Ruiz-Arias 2015, 
and Sengupta and Gotseff 2013).  

The model is now used in many solar-related applications, including the benchmarking of the 
radiative output of the Weather Research and Forecasting (WRF) model (Ruiz-Arias et al. 2012), 
operational derivation of surface irradiance components using MODIS satellite observations 
(Chen, Zhuang, and He 2014), improvement in GHI to DNI separation modeling (Vindel, Polo, 
and Antonanzas-Torres 2013), and development of future climate scenarios (Fatichi, Ivanov, and 
Caporali et al. 2011). REST2 is also being used at NREL and is integrated into its suite of 
algorithms that will produce future versions of the NSRDB. 

4.5 Model Uncertainty and Validation 
It is important to understand the accuracy of satellite measurements compared to surface data. A 
satellite pixel provides an estimate of surface radiation based on cloud and aerosol information 
spread throughout a certain area; the surface observations are based on an instrument viewing the 
sky from a point. If the satellite pixel size is small enough, parallax errors enter into the 
comparison. Terrain effects may also influence a comparison in which cloudiness may vary 
within a short distance. According to Perez et al. (1987), satellite-based retrievals of DNI are 
accurate to 10% to 12%. According to Renné et al. (1999) and Zelenka et al. (1999), the target- 
specific comparison to ground-based observations will have an RMSE of at least 20%; the time-
specific pixelwide accuracy is 10% to 12% on an hourly basis. 

The various empirical and theoretical methods discussed above have been tested for accuracy. 
Although there is no standardized method for accuracy assessment, the authors have mostly 
reported root mean square deviation and mean bias error (MBE) (absolute or relative). As an 
example, the physical model of Darnell et al. (1988) was used to compute surface radiation using 
cloud information from the ISCCP-C1 data. The results were then compared to surface 
observations collected by the World Radiation Data Center (WRDC) by Darnell and Staylor 
(1992). The root mean square deviation from this comparison was found to be approximately 16 
W/m2, and the mean bias was approximately 4 W/m2. (See Tables 4-4 through 4-7.) It should 
also be noted that interpretation of reported errors is dependent on the spatial and temporal 
resolution of the data being compared, and that the relative errors in DNI are always larger than 
in GHI—opposite to what occurs with high-quality measurements. 
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Table 4-4. Summary of Applications and Validation Results of Satellite Models— 
Empirical/Statistical Models (Renné et al. 1999) 

References Objective Satellite Data/ 
Study Period 

Location/ 
Resolution Methodology Accuracy 

Nullet 1987 GHI over the 
tropical 
Pacific 

ESSA 1,3,5,7; 
ITOS I, NOAA 
1,2; Feb. 1965– 
Jan. 1973 

Tropical 
Pacific, 
monthly, 2.5 
km by 2.5 km 

Cloud cover by 
Sadler, Oda, and 
Kilonsky 1976; 2 
irradiance models 

Three islands 
(annual) -
0.5% to 
+4.4% 

Shaltout and 
Hassen 
1990 

Seasonal 
maps of 
daily GHI 
and DHI 

METEOSAT 
1100 LST 
cloud-cover 
images 

Egypt, 1 
observation/d, 
2.5 km by 2.5 
km (visible) 
and 5 km by 
5 km 

 

Linear regression 
with 24 ground 
stations 

GHI ± 7.0% 
DHI ± 12.5% 

Delorme, 
Gallo, and 
Oliveiri 1992 

Real-time 
daily images 

METEOSTAT, 
visible, Mar. 
15–Jun. 30, 
1990 

Southern 
France, 
daily, 367 km 
by 725 km 

“Gistel” model 
applied to WEFAX 
images 

Generally 
high 
inaccuracies 

Ben Djemaa 
and 
Delorme 
1992 

Comparison 
to 7 ground 
stations 

METEOSAT 
B2, Oct. 1985–
Sept. 1986 

Tunisia, daily, 
30 km by  
30 km 

“Gistel” model 
applied to B2 data 
for daily values 

0%–10% 
(51% of data) 
-10% to 0% 
(38% of data) 
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Table 4-5. Summary of Applications and Validation Results of Satellite Models— 
Empirical/Physical Models (Renné et al. 1999) 

References Objective Satellite Data/ 
Study Period 

Location/ 
Resolution Methodology Accuracy 

Nunez 
1990 

Solar energy 
for Australian 
cities 

GMS,1986–
1988 

8 Australian 
cities, Daily, 
219 km by  
177 km 

Simple 
physical 
model by 
author 

< 10% (6 
cities) > 10% 
(2 cities) 

Tarpley 
1979 

GHI from 
GOES 

Summer 1997 USA Great 
Plains, daily 
totals from 
hourly images, 
50 km by  
50 km 

Empirical 
relation to 
ground 
stations 
coupled with 
physical 
models 

RMSE < 
10% (daily) 
RMSE <20% 
(1 image/d) 

Klink and 
Dollhopf 
1986 

Resource 
assessment 
for Ohio 

GOES, 1982 8 stations in 
Ohio, 50 km by 
50 km 

Tarpley 1979 10%–12% 
RMSE 
(snow-free)  
-3.5% MBE 

Czeplak, 
Noia, and 
Ratto 1991 

Comparisons 
of Tarpley 
method 

METEOSAT 
visible, Nov. 
1986 

Western 
Germany, 8 km 
by 8 km 

Tarpley 1979 21% RMSE 
(daily) 11% 
RMSE 
(monthly) 

Frulla et al. 
1988 

Solar 
radiation over 
Argentina 

GOES-E, 
1982–1983 

Northern 
Argentina, 
daily, 1 km by  
1 km 

Tarpley 1979 RMSE 10%–
15% (daily) 
RMSE 25% 
(hourly) 

Diabate 
et al. 1989 

Establish a 
HELIOSAT 
station 

METEOSAT, 
1983–1985 

European and 
eastern 
Mediterranean, 
hourly 

HELIOSAT 
(Cano et al. 
1986; 
Moussu 
et al. 1989) 

RMSE 
0.06 kWh/m2 
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Table 4-6. Summary of Applications and Validation Results of Satellite Models— 
Broadband Theoretical Models (Renné et al. 1999) 

References Objective 
Satellite 

Data/Study 
Period 

Location/ 
Resolution Methodology Accuracy 

Frouin 
et al. 1988 

Compare 
Gautier’s 
method to 5 
empirical 
models 

GMS, 
1986–1988 

8 Australian 
cities/daily, 
219 km by 
177 km 

Gautier, 
Diak, and 
Masse 1980, 
with 
refinements 

RMSE 12.0 
Wm

2 (daily) 
MBE -4.9 
Wm

2
 

Gautier 
1988 

GHI over 
oceanic 
regions 

Summer 
1997 

USA Great 
Plains, daily 
totals from 
hourly 
images, 50 
km by 50 km 

Gautier, 
Diak, and 
Masse 1980, 
with 
refinements 

RMSE 12 
Wm

2 or 5% 
(daily) MBE 
6 Wm

2
 

Darnell 
et al. 1988 

GHI estimates 
using sun- 
synchronous 
satellites 

GOES, 
1982 

8 stations in 
Ohio, 50 km 
by 50 km 

GHI 
technique 
from sun- 
synchronous 
satellites 

RMSE 
19.2% 
(daily) 
2.7% 
(monthly) 

Dedieu, 
Descahmps, 
and Kerr 
1987 

Calculate GHI 
and albedo 
from 
METEOSAT 

METEOSAT 
visible, Nov. 
1986 

Western 
Germany, 8 
km by 8 km 

Physical 
relationship 
between 
computed 
TOA and 
satellite 
values 

RMSE 
19.5% 
(hourly, 
noon) 
RMSE 6.7% 
(monthly) 

 
The Kolmogorov-Smirnov test (Massey Jr. 1951) is a rigorous method that is currently gaining 
acceptance for benchmarking satellite-retrieved GHI and DNI with ground-based observations. 
This test has the advantage of being nonparametric and is therefore not distribution dependent. It 
compares the distributions of GHI and DNI obtained from the two sources. 

A detailed analysis of uncertainty in models in general is beyond the scope of this handbook; 
however, it is important to indicate possible sources of these uncertainties. A detailed discussion 
about the relative importance of these uncertainties is provided in Cebecauer et al. (2011). One 
important issue of DNI and GHI assessments is the AOD of the atmosphere. Depending on its 
composition, an aerosol can scatter and/or absorb the incident irradiance and thus affect the DNI 
and to a lesser extent the GHI. This interaction is called atmospheric extinction. The proportion 
of absorption and scattering is determined by the aerosol type. For example, mineral dust is a 
mostly scattering aerosol; black carbon is highly absorbing. To calculate DNI, we need only the 
aerosol extinction, but GHI calculations are more accurate if the scattering and absorption 
components are available. AODs vary over the wavelength range, and the use of a single 
broadband AOD results in additional uncertainties. Climatological AODs can be used for 
resource assessment but sometimes lead to large DNI errors. This happens in areas of biomass 
burning, urban air pollution, and dust storms when the use of climatology results smooth out 
episodic events and ultimately lead to an underestimation of DNI. 
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It is difficult to discriminate between clouds and snow cover on the ground by using the satellite 
visible imagery. Because snow results in an elevated reflection of sunlight, the satellite image 
may be interpreted as being cloud covered. This results in an underestimation of GHI and DNI. 
The use of multiple satellite channels in the visible and infrared can solve this issue. 

Specular reflection, especially from sandy desert surfaces during certain times of the day, may 
result in interpretation of the satellite image as cloudy and thus an underestimation of GHI and 
DNI. This issue can be resolved by theoretically estimating the probability of specular reflection 
and factoring that into the calculation of surface radiation. 
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Table 4-7. Summary of Applications and Validation Results of Satellite Models— 
Spectral Theoretical Models (Renné et al. 1999) 

References Objective 
Satellite 

Data/Study 
Period 

Location/ 
Resolution Methodology Accuracy 

Möser and 
Raschke 
1984 

Solar radiation 
over Europe 

METEOSAT-
I-II, Jun. 
1979 and 
Apr. 1982 

Europe, 
daily (3 to 6 
images/d), 
25 km by  
25 km 

Normalized 
reflected 
radiance;  
2-stream 
radiative 
transfer 
model 

RMSE 5%–
6% (monthly) 
RMSE 10%–
14% (daily) 
Daily RE  
< 20% (no 
snow) > 20% 
(snow) 

Stuhlmann 
et al. 1990 

Improve IGMK 
model of 
Möser and 
Raschke 1983 
(cloud 
transmittance) 

METEOSAT 
ISCCP B2 

Europe, 
Africa, 
Western 
South 
Africa,  
30 km– 
50 km 

Explicitly 
account for 
multiple 
reflections 
among 
surface and  
atmospheric 
layers; 
improved 
clear-sky 
algorithm 

Monthly 
means 
generally 
within ± 10% 
(better over 
Europe) 

Pereira et 
al. 1996 

Surface GHI METEOSAT-
II, 1985–
1986 

Brazil 
monthly 

IGMK model 
(Sthuhlman 
et al. 1990) 

RMSE 13%  
MBE 7% 

Raschke et 
al. 1991 

Solar radiation 
atlas for Africa 

METEOSAT 
ISSCP B2, 
1985–1986 

Africa, 
30 km–50 
km (IGMK), 
2.5 km 
(HELIOSAT) 
monthly 
(derived 
from 3-h 
values) 

IGMK 
(HELIOSAT 
for selected 
areas over 
western 
Africa) 

RMSE –8% to 
16%(monthly) 
MBE –2% to 
8% (monthly) 

Pinker and 
Laszlo 
1992 

Global SRB 
estimates 

ISCCP C1 
(based on 
ISSCP B3) 
Jul. 1983 

Global 2.5 
degrees 
latitude by 
2.5 degrees 
longitude 

Pinker and 
Ewing 1985 

High level of 
consistency 
on global 
scale 
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5 Historical Solar Resource Data 
5.1 Introduction 
Understanding the long-term spatial and temporal variability of available solar resources is 
fundamental to any assessment of solar energy potential. Information derived from historical 
solar resource data can be used to make energy policy decisions, select optimum energy 
conversion technologies, design systems for specific locations, and operate and maintain 
installed solar energy conversion systems. Historical solar resource data can be the result of in- 
situ measurement programs, satellite remote-sensing methods, or meteorological model outputs. 
As described in the previous chapters, each type of data has different information content and 
applicability. 

This chapter summarizes historical solar resource data available for the United States and 
selected international locations. It is an inventory of representative sources of solar radiation data 
and provides a summary of important data characteristics associated with each data source (e.g., 
period of record, temporal and spatial resolutions, available data elements, and estimated 
uncertainties). 

NREL and other agencies have made every effort to make data products that are as useful, 
robust, and as representative as possible; however, the responsibility for applying the data 
correctly resides with the user. A thorough understanding of the data sources, how they are 
created, and their limitations is vital to proper application of the resource data to analyses and 
subsequent decision-making. Discussion and examples of the use of several of these data sets for 
solar energy applications are presented here. Users are encouraged to read the pertinent sections 
of this chapter before applying solar resource and meteorological data. 

Measured solar irradiance data can provide detailed temporal information for a specific site. 
Because solar radiation measurement stations are challenging to operate and the data collected 
are not used for routine weather forecasts, they are few in number and have limited data 
collection records. The largest national measurement network for obtaining hourly solar resource 
data in the United States was the 39-station NOAA network, which operated from 1977 through 
1980 (See Section 5.4.10). Currently, measured solar irradiance in some form is available from 
more than 3,000 sites in the United States that are operated by various interests producing data 
with a wide range of data quality. (See Section 5.4.15 on the photovoltaic geographical 
information system, or PVGIS.) 

Satellite-based observations and mesoscale meteorological models address the needs for 
understanding the spatial variability of solar radiation resources throughout a range of distances. 
Present state-of-the-art models provide estimates for GHI and DNI at spatial resolutions of 10 
km or less for the United States. The rapidly growing needs for more accurate solar resource 
information throughout shorter temporal and smaller spatial scales require the user to fully 
appreciate the characteristics of all available data, especially those from historical sources. 

5.2 Solar Resource Data Characteristics 
Characterizing the available solar resources for solar energy applications is important for all 
aspects of realizing the full potential of this utility-scale energy source. Energy policy decisions, 
engineering designs, and system deployment considerations require an accurate understanding of 
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the relevant historical solar resource data, the ability to assess the accuracy of current solar 
measurement and modeling techniques, and forecasts of the levels of solar irradiance for various 
temporal and spatial scales. 

Solar resource data can be the result of in-situ measurement programs, remote sensing 
instruments, or meteorological modeling outputs. Each type of data product has different 
information content and applicability. 

Measured solar irradiance data can provide information about the temporal variability at a 
specific site. Practical radiometer designs were developed in the early 1900s to determine the 
sun’s energy output based on high-altitude measurements of DNI made with pyrheliometers 
(Hulstrom 1989). To address the needs of agriculture for monitoring such quantities as 
evapotranspiration, the U.S. Weather Bureau (now National Weather Service) deployed a 
national radiometer network in the1950s to collect GHI. Since then, radiometer design and data 
acquisition system performance advanced considerably.  

The earliest records of solar flux measurements were based on thermopile-type pyranometer 
signals recorded and stored on analog strip charts to determine daily amounts of solar flux on a 
horizontal surface. Today, 1-minute (or shorter) digital recordings are available from fast-
response silicon photodiodes and improved thermopile- type pyranometers and pyrheliometers 
that are deployed in regional measurement networks to provide solar energy resource data for a 
variety of applications. 

Historically, there have been four radiometer calibration reference scales: Ångström Scale (ÅS; 
created in 1905), Smithsonian Scale (SS; created in 1913), International Pyrheliometric Scale 
(IPS; created in 1956), and the WRR (1979). The relative differences among these scales can 
introduce a data bias on the order of 2%. The user should be aware of this potential bias in data 
measured before 1979. 

• WRR = 1.026 (ÅS 1905)  

• WRR = 0.977 (SS 1913)  

• WRR = 1.022 (IPS 1956). 

Modeled solar resource data derived from available surface meteorological observations and 
satellite measurements provide estimates of solar resource potential for locations lacking actual 
measurements. These modeling methods address the needs for improved spatial resolution of the 
resource data. The first national effort to model solar resources in the 1970s advanced our 
understanding of solar radiation distributions based on the then available historical 
measurements at 26 locations to an additional 222 meteorological observing stations with 
detailed records of hourly cloud amounts and other relevant data (see Section 5.4.2 on 
SOLMET/ERSATZ). Today, satellite-based observations of clouds are used to model subhourly 
surface solar fluxes with a 4-km spatial resolution (see Sengupta et al. [2014]). 

5.3 Long-Term and TMY Data Sets 
Understanding the time frame, or period of record, associated with solar resource and other 
meteorological data is important for conducting useful analyses. These weather-driven data have 
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fluctuations that can range from seconds to years and longer. Long-term data can be 
representative of the climate if the period of record is at least 30 years. By convention, the 
meteorological community has deemed that according to the 1933 International Meteorological 
Conference in Warsaw, a 30-year interval is sufficient to reflect longer-term climatic trends and 
filter the short-term interannual fluctuations and anomalies. Climate “normals” are recomputed 
each decade to address temperature, pressure, precipitation, and other surface meteorological 
variables. Note that the term normal is not equivalent to “average” and has a specific meaning in 
the meteorological and climatological community. Namely, normal refers to the 30-year average 
of an observed parameter that is updated every 10 years (Arguez and Vose 2011). Thus, the 
averaging period shifts every 10 years. 

Often plant project developers require “typical” meteorological information for a potential plant 
site for prefeasibility studies. A TMY data set provides designers and other users with a small 
sized annual data set that holds 8,760 hourly meteorological values that typify conditions at a 
specific location throughout a longer period, such as the 30-year climatic normal. Different types 
of TMYs exist. Twelve TMMs (typical meteorological months) selected on the basis of their 
similarity of individual cumulative frequency distributions for selected data elements comprise 
the TMY data set. The longer-term distributions are determined for that month using data from 
the full period of record. The TMMs are then concatenated, essentially without modification, to 
form a single year with a serially complete data record. The resulting TMY data set contains 
measured and modeled time-series solar radiation and surface meteorological data, although 
some hourly records may contain filled or interpolated data for periods when original 
observations are missing from the data archive. 

TMY data sets are widely used by building designers and others for rough modeling of 
renewable energy conversion systems. Although not designed to provide meteorological 
extremes, TMY data have natural diurnal and seasonal variations and represent a year of typical 
climatic conditions for a location. A TMY data set should not be used to predict weather or solar 
resources for a particular period of time, nor is it an appropriate basis for evaluating real-time 
energy production or the detailed power plant design. Rather, a TMY data set represents 
conditions judged to be typical throughout a long period, such as 30 years. Because it represents 
typical rather than extreme conditions, it is not suited for designing systems and their 
components to meet the worst-case weather conditions that could occur at a location. 

The next section describes the three versions of TMY data for the United States. In 1978, Sandia 
National Laboratories produced the first TMY for 248 locations using long-term weather and 
solar data from the 1952–1975 Solar and Meteorological (SOLMET) hourly data set and 
ERSATZ database (Hall et al. 1978). In 1994, NREL developed the TMY2 using data from the 
1961–1990 NSRDB (Marion and Urban 1995). In 2007, NREL released a 15-year updated 
NSRDB for 1991–2005 (Wilcox 2007) that formed the basis of the TMY3 data set. 

5.3.1 Key Considerations 
Applying solar and meteorological data from different sources requires attention to these key 
considerations: 

• Period of record. Influenced by many factors, solar resource data vary from year to year, 
seasonally, monthly, weekly, daily, and on timescales down to a few seconds. Thus, 
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climate normals are based on 30 years of meteorological data. But the 30-year averaging 
period is updated (shifted) every 10 years. The normal for one period will not likely be 
the same as a normal for previous or successive periods. Another popular approach is to 
determine a TMY data set from a statistical analysis of multiyear data to derive a single 
year of data that are representative of a longer-term record. Comparative analyses must 
account for any natural differences that result from the periods when the data were 
acquired. 

• Temporal resolution. Solar resource data can range from annually averaged daily-
integrated power (kWh/m2/day) typically used for mapping resource distributions to 1-
second samples of irradiance (W/m2) for operational time-series analyses. Other 
considerations depend on the data type. 

• Spatial coverage. The area represented by the data can range from a single station to a 
sample geographic region to a global perspective. 

• Spatial resolution. Ground-based measurements are site specific. Current satellite-
remote sensing estimates can be representative of 10-km by 10-km or smaller areas. 

• Data elements and sources of the data. The usefulness of solar resource data may 
depend on the available data elements (e.g., DNI) and whether the data were measured, 
modeled, or produced in combination. 

• Data quality control and quality assessments. Descriptions of the measurement 
operations, model validation methods, and data adjustments or corrections are key 
metadata elements. 

• Estimated uncertainties. Stated uncertainties should include a description of the 
methodology used to provide this information. 

• Availability. Data are distributed in the public domain, for purchase, or license. 

• Updates. The need to include the most recent data and other revisions can require regular 
database updates. 

5.4 Solar Resource Data 
An inventory of solar resource data sources is presented in chronological order. 

The attributes of each data source are presented using the list of key considerations (see sidebar). 
DNI data are available from these sources or can be estimated by using available models and the 
data elements present in each data set. 

5.4.1 National Center for Environmental Protection/National Center for 
Atmospheric Research Global Reanalysis Products 

Products from National Center for Environmental Prediction/National Center for Atmospheric 
Research Reanalysis Project are archived in the data set called ds090.0. The resolution of the 
global Reanalysis model is 209 km with 28 vertical levels. Results are available at 6-hour 
intervals. Although the initial plan was to reanalyze the data for a 40-year period (1957–1996), 
production has gone back to 1948 and is going forward continuously. Plans call for rerunning the 
entire period as next generation models are ready (Kalnay et al. 1996; Kistler et al. 2001). 
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There are more than 80 variables, including incoming solar radiation (GHI), temperature, relative 
humidity, and wind components, in several coordinate systems. They are organized as different 
subgroups in the archive. Some special periods are analyzed more than once to provide data for 
special research studies. 

The Research Data Archive is maintained by the Computational and Information Systems 
Laboratory at the National Center for Atmospheric Research. The National Center for 
Atmospheric Research is sponsored by the National Science Foundation. The original data are 
available from the Research Data Archive in data set number ds090.0.24 

• Period of record: 1948–2009 

• Temporal resolution: 6-hour (W/m2) 

• Spatial coverage: Global 

• Spatial resolution: 2.5 degrees (nominal) 

• Data elements and sources: GHI and more than 80 variables, including geopotential 
height, temperature, relative humidity, and U and V wind components, in several 
coordinate systems, such as a 17-pressure-level stack on 2.5- by 2.5-degree grids, 28 
sigma-level stacks on 192 by 94 Gaussian grids, and 11 isentropic-level stacks on a 2.5- 
by 2.5-degree grid 

• Data quality control and assessment: No information 

• Estimated uncertainties: None stated 

• Availability: University Center for Atmospheric Research, Computational and 
Information Systems Laboratory Research Data Archive:  
http://rda.ucar.edu/datasets/ds090.0/ 

• Updates: Monthly. 

5.4.2 SOLMET/ERSATZ 
In response to the energy crisis in the mid-1970s, NOAA and the Energy Research and 
Development Administration (later the U.S. Department of Energy; DOE) funded the 
“rehabilitation” of surface meteorological and solar measurement data to create the SOLMET 
hourly data set. SOLMET data were derived from the best available solar radiation 
measurements from 26 stations operated by the National Weather Service (NWS) (National 
Climatic Data Center [NCDC] 1978 and 1979a). Additional ERSATZ data, literally an “inferior 
substitute,” were modeled from available hourly and 3-hour cloud and other surface 
meteorological observations to expand the data coverage by an additional 222 NWS stations. The 
SOLMET/ERSATZ database was created to address the needs of the solar energy research and 
development community. The database provided: 

• A single source of merged suitable solar measurements and meteorological data 

• Data consistent with SI units 
                                                 
24 See http://rda.ucar.edu. 

http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/
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• Time-series data so users can access the information in true solar and standard time 

• Time-series data so users will be aware of the selected meteorological observation that is 
closest to the time of the solar observation (e.g., selected to be the observation nearest to 
the midpoint of the solar hour) 

• Data recorded in local standard time for conversion to solar time 

• A data format with additional solar radiation parameters (direct and tilted, normal 
incidence, diffuse, and net), as well as additional measurements (ultraviolet and other 
spectral regions) to be available from stations in the future 

• Historical solar radiation data (including the ETR field) converted to the same 
international scale based on a solar constant value of 1,377 W/m2 

• Eliminated undesirable format features that were inherent in the past data sources, such as 
overpunches and blanks 

• Missing observations and observations that were estimated via models (e.g., bright 
sunshine duration and cloud regression models) 

• Solar GHI data as they were originally observed and that provided the user with data 
corrected for all known scale, instrument, and calibration problems in addition to a data 
set corrected via a model. 

This database provides some of the earliest measurements of solar irradiance from a national 
network. 

• Period of record: December 1951 through December 1976.  

• Temporal resolution: Hourly (hour ending in local solar time)  

• Spatial coverage: United States and territories (Figure 5-1) 

• Spatial resolution: 26 measurement stations and 222 modeled stations 

• Data elements and sources: ETR, GHI (observed-SOLMET or modeled-ERSATZ, 
engineering corrected, standard-year corrected), direct normal radiation (estimated from 
global), minutes of sunshine, clouds (ceiling height, total and opaque cloud fractions, and 
information for up to four cloud layers), and surface meteorological conditions 
(temperature, wind speed, pressure, snow cover, horizontal visibility, sky condition, and 
current weather) 

• Estimated uncertainties: Based on comparisons to subsequent NOAA network 
measurements from 1977 to 1980, the monthly mean daily total SOLMET GHI and DNI 
accuracies are ± 7.5% and ± 10%, respectively. Similarly, the monthly mean daily total 
ERSATZ GHI and DNI accuracies are ± 10% and ± 20%. The modeling method 
eliminated any evidence for long-term trends in atmospheric opacity resulting from 
volcanic eruption, urbanization, or other causes. The uncertainty of individual hourly 
values is higher than the monthly mean daily statistics. 

• Availability: NCDC, NOAA, NOAA’s Satellite and Information Service (NESDIS), 
U.S. Department of Commerce: http://www.ncdc.noaa.gov/  

http://www.ncdc.noaa.gov/


88 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

• Updates: Released in 1978, the SOLMET/ERSATZ database was replaced in 1992 by 
the 1961–1990 NSRDB. 

 
Figure 5-1. SOLDAY and SOLMET measurement stations (26 each). Image from NREL  

 
5.4.3 SOLDAY 
SOLDAY is the second of two data rehabilitation projects completed for NOAA and the Energy 
Research and Development Administration (now DOE) to produce a solar resource data set with 
merged suitable solar measurements and meteorological data consistent with SI (NCDC 1979b). 
The daily GHI data were reformatted by removing all known procedural and instrumental errors 
and including all available meteorological elements. Rehabilitated hourly solar measurement 
stations used in SOLMET were not selected for the SOLDAY format to eliminate data 
redundancy. Daily GHI data were based on recorded solar radiation on strip charts and daily 
amounts obtained for a part of the time by summing hand-computed hourly values. For the 
remainder of the time, daily sums were obtained from a mechanical integrator. This data set 
provides some of the earliest measurements of solar radiation and complements the geographic 
distribution of the SOLMET measurement stations. 

• Period of record: January 1952 through December 1976 

• Temporal resolution: Daily 

• Spatial coverage: Continental United States (Figure 5-1) 

• Spatial resolution: 26 measurement stations 

• Data elements and sources: Computed times of daily sunrise and sunset, ETR (based on 
solar constant = 1,377 W/m2), measured GHI from mechanical integrators and strip charts 
and daily amounts calculated by summing hand-computed hourly values, minutes, and 
percent of possible sunshine, temperature (maximum, minimum, mean), precipitation, 
snowfall, snow depth, weather codes, and sky cover from hourly observations. None of 
the 26 SOLDAY measurement stations are in the hourly SOLMET data set. 
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• Data quality control and assessment: Individual station histories note pertinent 
information, making it possible to properly interpret the data. If more than 60 days 
elapsed between clear solar noon irradiance values, no sky cover/sunshine model was 
used to fill the irradiance data gaps. 

• Estimated uncertainties: Based on the known measurement characteristics of the 
Eppley Laboratory, Inc., Model 50 and Model PSP pyranometers used to measure GHI at 
SOLDAY stations, the estimated daily total irradiances are expected to be within ± 10%. 
Measured data from Model PSP radiometers were not corrected for thermal offsets that 
were discovered much later. 

• Availability: NCDC, NOAA, NESDIS, U.S. Department of Commerce: 
http://www.ncdc.noaa.gov/  

• Updates: Released in 1979, the SOLDAY database was replaced in 1992 by the 1961–
1990 NSRDB. 

5.4.4 TMY 
A TMY data set provides a single year of hourly data for solar radiation and other meteorological 
elements that permit performance comparisons of system types and configurations for one or 
more locations. Different versions of TMYs exist. Here, the first TMY data set is described. A 
general description of TMYs can be found at the beginning of the chapter; the other versions of 
TMYs are described later in this chapter. It should be repeated that a TMY is not necessarily a 
good indicator of conditions throughout the next year, or even the next 5 years; rather, it 
represents conditions judged to be typical throughout a long period, such as 30 years. It should 
also be repeated that TMYs represent typical rather than extreme conditions and that TMYs are 
therefore not suited for designing systems and their components to meet the worst-case weather 
conditions that could occur at a location. 

The first TMY data set is a subset of the hourly SOLMET measurement and ERSATZ model 
estimates for 248 locations in the United States and territorial possessions. The TMY data 
consists of typical months concatenated to form a complete year of 8,760 hourly records. The 
TMMs were selected in part by comparing weighted cumulative distribution functions of nine 
data elements, as shown in Table 5-1, to the long-term distributions. Examining the weighted 
sum of the 13 Finkelstein-Schafer statistics for each year and persistence characterized by 
frequency and run length above and below fixed long-term percentiles resulted in 5 “candidate 
years” for the month in question. The final selection of a TMM was somewhat subjective; years 
with small weighted sum statistics, small deviations, and “typical” run structures were chosen. 

TMY data provide hourly GHI and DNI solar data and other surface meteorological elements. 

Table 5-1. Weighting Factors Applied to Cumulative Distributions 

Version 

Temperature 
Wind Velocity Solar Radiation 

Dry Bulb Dew Point 

Max. Min. Mean Max. Min. Mean Max. Mean GHI DNI 

TMY 1/24 1/24 2/24 1/24 1/24 2/24 2/24 2/24 12/24 NA 
TMY2-3 1/20 1/20 2/20 1/20 1/20 2/20 1/20 1/20 5/20 5/20 

 

http://www.ncdc.noaa.gov/
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• Period of record: One year representative of the SOLMET/ERSATZ data period 1952–
1976 

• Temporal resolution: Hourly 

• Spatial coverage: United States and territories (Figure 5-1) 

• Spatial resolution: 26 measurement stations and 222 modeled stations 

• Data elements and sources: ETR, GHI (observed-SOLMET or modeled-ERSATZ, 
engineering corrected, standard-year corrected), direct normal radiation (estimated from 
global), minutes of sunshine, clouds (ceiling height, total and opaque cloud fractions, and 
information for up to four cloud layers), and surface meteorological conditions 
(temperature, wind speed, pressure, snow cover, horizontal visibility, sky condition, and 
current weather) 

• Data quality control and assessment: Measured hourly GHI determined from strip 
chart recordings and labeled as “observed” data. Known instrument corrections for 
temperature response were applied to observed GHI and labeled as “engineering 
corrected” data. Measured data from single-black thermopile radiometers were not 
corrected for thermal offsets that were discovered much later. Clear-sky model estimates 
of pyranometer calibration changes were applied to observed GHI and labeled as 
“standard year irradiance corrected” data. The clear-sky model was also used to fill 
missing GHI observations. Only the standard year irradiance data field is serially 
complete. All SOLMET DNI data were computed based on a regression relationship 
between observed hourly global and DNI measurements taken at five measurement 
stations: Albuquerque, New Mexico; Livermore, California; Raleigh, North Carolina; 
Maynard, Massachusetts; and Fort Hood, Texas. All ERSATZ GHI and DNI data were 
estimated from clear-sky models and available cloud observations. 

• Estimated uncertainties: The uncertainty of the data sets that were used for the creation 
of the TMY can be found in this chapter in the section about the SOLMET/ERSATZ 
data. The deviation between the TMY and the site-specific actual measurements are not 
discussed here. A comparison of the TMY to the TMY2 can be found in the following 
section on the TMY2 in this chapter. 

• Availability: NCDC, NOAA, NESDIS, U.S. Department of Commerce:  
http://www.ncdc.noaa.gov/ 

• Updates: TMY was released in 1978. TMY Version 2 (TMY2) is based on the 1961–
1990 NSRDB and was available in 1994. TMY Version 3 (TMY3) is based on input data 
for 1976–2005 from the 1961–1990 NSRDB, Version 1.1 and the 1991–2005 NSRDB 
update. TMY3 was available in 2008. 

Further, NREL recently created a gridded TMY, TDY, and TGY data set for the continental 
United States. This gridded typical data set is derived from the 10-km by 10-km gridded NSRDB 
data (for years 1998–2009). The methodology used is similar to that of the TMY2 and TMY3 
production; however, additional typical data sets such as TDY and TGY were developed, 
whereby the weighting focused on the irradiance components of the data rather than the 
meteorological data. The weighting factor for each solar component was 20/20 for TDY 
production and 20/20 during the TGY production. 

http://www.ncdc.noaa.gov/
http://www.ncdc.noaa.gov/
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5.4.5 1961–1990 NSRDB 
NREL completed the 1961–1990 NSRDB in 1992 (NREL 1992). The database consists of 
serially complete hourly modeled (93%) and measured (7%) solar radiation data for 239 
locations in the United States. Data records include associated meteorological measurements 
such as temperature, humidity, cloud cover, and visibility. Measured solar radiation data are 
included in the data sets when available for 52 NSRDB primary stations, but among those no 
station has more than a few years of measured data. All remaining GHI solar data were modeled 
using the METSTAT solar radiation model (Maxwell 1998). The METSTAT model was 
designed to accept hourly cloud information from the then readily available data from trained 
NWS observers. DNI measurements were available from primary stations; otherwise, these data 
were modeled from available meteorological data. 

The NSRDB contains statistical summaries computed from the hourly data for the entire period 
of record for all stations. For the solar radiation data, these statistics include the average and 
standard deviations of the daily total solar energy (DNI, DHI, and GHI) for each station-year- 
month and each station-year. The 30-year averages and the standard deviations of monthly and 
annual means from 1961 through 1990 are also provided. For the meteorological elements, only 
monthly, annual, and 30-year averages were computed. 

The hourly statistical products include monthly, annual, and 30-year averages and standard 
deviations for each hour of the day for GHI, DNI, and DHI. The averages can be used to prepare 
average diurnal profiles of hourly solar energy. The hourly values have also been binned in 24 
50-Wh/m2 bins from 0 Wh/m2to 1,200 Wh/m2. The mean number of hourly values falling into 
each bin has been determined for each station-month for the 30-year period of record from 1961 
through 1990. These statistics can be used to plot histograms and determine cumulative 
frequency distributions. 

A solar radiation persistence product was created for each station-month by calculating the 
number of times the daily total solar radiation energy persisted above or below set thresholds for 
periods from 1 day to 15 days. These calculations were performed for the entire 30-year period 
from 1961 to 1990. 

• Period of record: 1961–1990 

• Temporal resolution: Hourly 

• Spatial coverage: United States, Guam, and Puerto Rico (Figure 5-2) 

• Spatial resolution: 239 stations (56 stations have some radiation measurements) 

• Data elements and sources: Hourly GHI, DNI, DHI, ETR, direct normal ETR, total sky 
cover, opaque sky cover, ceiling height, dry-bulb temperature, dew point temperature, 
relative humidity, atmospheric pressure, horizontal visibility, wind speed, wind direction, 
present weather, AOD, total precipitable water, snow depth, and number of days since 
last snowfall. Approximately 93% of the irradiance data were modeled from cloud 
observations. Measured DNI are available from primary stations. 
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Figure 5-2. Original 239 stations in the 1961–1990 NSRDB released in 1992 (NSRDB 1992 and 1995) 

and the 1,454 stations in the 1991–2005 NSRDB released in 2007. Image from NREL  

 
• Data quality control and assessment: An automated data processing method was 

developed to apply quality flags to each hourly solar radiation and meteorological 
element. These flags provide information about the source and uncertainty of a data 
element, allowing the user to evaluate its usefulness. Because of the difficulties 
frequently encountered when measuring solar radiation and the resultant unknown quality 
of some solar radiation data, a major effort was undertaken to develop procedures and 
software for performing post-measurement quality assessments of these data. Such 
assessments were needed to ensure that the data selected for model development and 
other applications were of the highest quality available. The assessments were also 
needed to calculate the uncertainty of measured solar radiation data. A quality-assessment 
software package (SERI QC) was developed to address these needs (Maxwell et al. 
1993). SERI QC is based on the establishment of boundaries or limits within which 
acceptable data are expected to lie. This is similar to previous quality-assessment 
procedures that used extraterrestrial values for the upper limit and zero for the lower limit 
within which solar radiation data were expected. SERI QC increased the sophistication of 
this approach by establishing much more restrictive boundaries specific to each station-
month. Measured data from single-black thermopile radiometers were not corrected for 
thermal offsets that were discovered much later. 

• Estimated uncertainties: Statistics about the quality of the solar radiation data were 
determined by calculating the percentage of the hourly values to which each source and 
uncertainty flag was assigned. These percentages were calculated for each station-year 
and for the 30-year period of record and are available as a separate product. 

• Availability: NCDC, NOAA, NESDIS, U.S. Department of Commerce Renewable 
Energy Data Sources. Solar data only and documentation are maintained by the NREL 
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Renewable Resource Data Center (RReDC):  
http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/ 

• Updates: Released in 1992; updated in 2007 (Wilcox 2007). 

5.4.6 TMY2 
TMY provides a single year of hourly data for solar radiation and other meteorological elements 
that permit performance comparisons of system types and configurations for one or more 
locations. A TMY is not necessarily a good indicator of conditions throughout the next year, or 
even the next 5 years; rather, it represents conditions judged to be typical throughout a long 
period of time, such as 30 years. Because they represent typical rather than extreme conditions, 
they are not suited for designing systems and their components to meet the worst-case conditions 
occurring at a location. 

TMY2 was developed from the 1961–1990 NSRDB. Succeeding the older 1952–1975 
SOLMET/ ERSATZ database, the NSRDB accounted for any 1975–1990 climate changes and 
provided more accurate values of solar radiation for several reasons, including because it 
provided: 

• A better model for estimating values (More than 90% of the solar radiation data in both 
databases are modeled.) 

• More measured data, some of which are DNI 

• Improved instrument calibration methods 

• Rigorous procedures for assessing data quality. 
 

A comparison of the older and newer databases provided an incentive for developing the 
TMY2s. On an annual basis, 40% of the NSRDB and SOLMET/ERSATZ stations were in 
disagreement for values of GHI by more than 5%; some stations showed disagreement of up to 
18% (Marion and Myers 1992). For DNI, 60% of the NSRDB and SOLMET/ERSATZ stations 
were in disagreement by more than 5%; some showed disagreement of up to 33%. Disagreement 
between the two databases is even greater when compared on a monthly basis. 

An analysis of cloud cover data indicated little or no change for the two periods; consequently, 
most of the disagreement for NSRDB and SOLMET/ERSATZ data is attributed to differences in 
reconstructing the instrument calibrations and differences in the solar radiation models (Marion 
and Urban 1995). Because of differences in the databases from which they were derived, the old 
TMYs and the new TMY2s will differ. For some stations the differences may be minor, but for 
others will be significant. 

For the TMY2 and the more recent TMY3 data (see Section 5.4.13 on the Solar Radiation 
Research Laboratory), the selection of the months in the typical year included a weighting index 
for DNI radiation (see Table 5-1). This improves the agreement between annual DNI for the 
TMY and the 30-year annual average by a factor of approximately 2 (based on 20 geographically 
representative NSRDB stations), as follows. When only GHI is used for the solar index, the 
TMY annual direct radiation values for the 20 stations were within 4% (95% confidence level) of 

http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/
http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/
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the30-year annual average. Using both GHI and DNI indices reduced the differences to 2%, with 
no adverse effect on GHI comparisons. 

Because they represent typical rather than extreme conditions, TMYs are not suited for designing 
systems and their components to meet the worst-case conditions at a location. 

• Period of record: One year representative of the 1961–1990 NSRDB data period 

• Temporal resolution: Hourly 

• Spatial coverage: United States and territories (Figure 5-1) 

• Spatial resolution: 239 stations representing the 1961–1990 NSRDB 

• Data elements and sources: Hourly GHI, DNI, DHI, ETR, direct normal ETR, total sky 
cover, opaque sky cover, ceiling height, dry-bulb temperature, dew point temperature, 
relative humidity, atmospheric pressure, horizontal visibility, wind speed, wind direction, 
present weather, AOD, total precipitable water, snow depth, and number of days since 
last snowfall. Approximately 93% of the irradiance data were modeled from surface 
observations of clouds. Measured DNI is available from primary stations. The format of 
the TMY2 data files is different from the format used for the NSRDB and the original 
TMY data files. 

• Data quality control and assessment: The data are serially complete; each hourly 
record in the file contains values for solar radiation, illuminance, and meteorological 
elements. A two-character source and uncertainty flag is attached to each data value to 
indicate whether the data value was measured, modeled, or missing, and to provide an 
estimate of the uncertainty of the data value. Measured data from single-black thermopile 
radiometers were not corrected for thermal offsets that were discovered much later. 

• Estimated uncertainties: The TMY2 data were compared to 30-year NSRDB data sets 
to show differences in mean values between TMY2 data and long-term data for the same 
stations. Comparisons were made on a monthly and an annual basis for GHI, DNI, and 
south-facing latitude tilt radiation; and for heating and cooling degree-days. These 
comparisons give general insights into how well, with respect to long-term conditions, 
the TMY2s portray the mean solar resource and the dry-bulb temperature environment 
for simulations of solar energy conversion systems and building systems. On an annual 
basis, the TMY2s compare closely to the 30-year data sets. The monthly comparisons are 
less favorable than the annual comparisons (Table 5-2). 

Table 5-2. Comparisons of TMY2 Data to 30 Years of NSRDB Data 
 

Data Element 
Confidence Interval (kWh/m2/d) 

Monthly Annual 
GHI ± 0.20 ± 0.06 

DNI ± 0.50 ± 0.16 

Global on tilted surface 
(tilt angle = site latitude) 

 
± 0.29 

 
± 0.09 
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• Availability: NREL RReDC: http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/tmy2/     

• Updates: TMY2 was released in 1994. TMY3 is based on input data for 1976–2005 from 
the 1961–1990 NSRDB, Version 1.1, and the 1991–2005 NSRDB update. TMY3 was 
available in 2008 (see Section 5.4.24). 

5.4.7 World Meteorological Organization WRDC 
Established in 1962, the WRDC is one of the recognized world data centers sponsored by the 
WMO. Located at the Main Geophysical Observatory in St. Petersburg (formerly Leningrad), 
Russian Federation, the WRDC has collected, archived, and published solar radiation data from 
observing stations from around the world in accordance with Resolution 31 of WMO Executive 
Committee XVIII, which ensures the availability of these data for research by the international 
scientific community. Daily total GHI measurements comprise most of the data from the more 
than 1,000 sites that have contributed to the archive. Some diffuse, sunshine duration, and 
radiation balance observations are also submitted. Data are submitted primarily by national 
meteorological services from contributing countries. Some recent hourly measurements are 
present for a few measurement stations. Dense coverage is available for the western European 
continent; whereas the South American continent has large unrepresented areas. 

• Period of record: 1964–present 

• Temporal resolution: Daily totals with some hourly measurements at a few sites 

• Spatial coverage: Global (Figure 5-3) 

• Spatial resolution: More than 1,000 measurement stations 

• Data elements and sources: Primarily daily total GHI, radiation balance, and sunshine 
duration, but some DHI and DNI. Some hourly measurements are available from a few 
sites. 

• Data quality control and assessment: In an effort to ameliorate the differing practices 
among submitting countries, the WRDC has a long-term practice of processing data 
arrays from many stations; however, the processing of data, and especially quality 
control, is carried out without knowledge of in-situ weather conditions. 

• Estimated uncertainties: No information 

• Availability: http://wrdc-mgo.nrel.gov and http://wrdc.mgo.rssi.ru.25  

                                                 
25 For more detailed information, contact Voeikov Main Geophyical Observatory, World Radiation Data Centre, 7, 
Karbyshev Str., 194021, St. Petersburg, Russian Federation. Telephone: 812-297-43-90; fax: 812-297-86-61. Please 
direct any comments or suggestions regarding the Web site to Dr. Anatoly V. Tsvetkov, Head of WRDC. 
Telephone: 812-295-04-45; email: wrdc@main.mgo.rssi.ru or tsvetkov@main.mgo.rssi.ru  

http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/tmy2/
http://wrdc-mgo.nrel.go/
http://wrdc-mgo.nrel.go/
mailto:wrdc@main.mgo.rssi.ru
mailto:tsvetkov@main.mgo.rssi.ru
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Figure 5-3. WRDC measurement stations. Image from NREL 

 
5.4.8 Western Energy Supply and Transmission Associates Solar Monitoring 

Network 
In the mid-1970s, Southern California Edison submitted a proposal to Western Energy Supply 
and Transmission Associates to expand the solar monitoring effort outside the Southern 
California Edison service territory in an effort to establish an accurate solar resource database. 
The resulting Western Energy Supply and Transmission Solar Monitoring Network eventually 
included 52 stations in 6 western states (Arizona, California, Colorado, Nevada, New Mexico, 
and Wyoming). The network operated for 5 years from 1976 to 1980 collecting 15-minute GHI, 
solar DNI, and dry-bulb temperatures. Not all stations were in operation all 5 years, nor did all 
collect all data parameters. Thirteen stations reported data in the first West Associates Network 
publication in 1976. All told, during the approximately 4½ years of network operation, 52 
stations gathered data on GHI and ambient temperature. Twenty-six also reported DNI 
measurements. 

• Period of record: 1976–1980 

• Temporal resolution: 15-minute 

• Spatial coverage: Arizona, California, Colorado, Nevada, New Mexico, and Wyoming 

• Spatial resolution: 52 measurement stations (Figure 5-4). 
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Figure 5-4. Western Energy Supply and Transmission Associates Solar Monitoring Network of 52 

measurement stations (1976–1980). Image from NREL 

 
• Data elements and sources: GHI, DNI, and dry-bulb temperature measured with 

pyranometers (Eppley Black and White, Eppley PSP, and the Spectrolab Spectrosun 
SR75) and pyrheliometers (Eppley NIP) in automatic solar trackers. DNI was measured 
at 26 of the 52 stations. 

• Data quality control and assessment: Southern California Edison instituted a rigorous 
program of radiometer maintenance and calibration for the Western Energy Supply and 
Transmission Associates Solar Monitoring Network. Procedures included maintenance to 
be performed once per week at stations that monitored GHI and dry-bulb temperature. 
The pyranometer dome was cleaned and the electronics package checked for correct 
operation. At stations that also monitored DNI, additional procedures called for 
maintenance to be performed three times per week. During this maintenance, the 
pyrheliometer was cleaned and the semiautomatic solar tracker was adjusted for changes 
in declination and azimuth. All network radiometers were calibrated twice per year to the 
WRR. Measured data from single-black thermopile radiometers were not corrected for 
thermal offsets that were discovered much later. 

• Estimated uncertainties: Accounting for the frequency of maintenance and radiometer 
calibrations, the daily total GHI and DNI are likely accurate to ± 5% and ± 8%. (DNI 
uncertainty estimate accounts for semiautomatic operation of the solar tracker requiring 
manual adjustment for changing solar declination.) 

• Availability: NREL RReDC: http://rredc.nrel.gov/solar/pubs/wa/wa_index.html  

• Updates: Released in 1981. 

5.4.9 Pacific Northwest Solar Radiation Data Network 
The University of Oregon’s Pacific Northwest Solar Data Network has the longest continuous 
record of measured DNI in the United States. Beginning in 1977 with an 11-station network, the 
goal has remained to provide high-quality scientific data for solar energy resource evaluation and 
long-term climate studies. The work is made possible by the Bonneville Power Administration, 

http://rredc.nrel.gov/solar/pubs/wa/wa_index.html
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Energy Trust of Oregon, Eugene Water and Electric Board, Emerald People’s Utility District, 
NREL, Northwest Power and Conservation Council, and Oregon BEST. Information about the 
monitoring stations, solar data, software tools, and educational material is available from the 
University of Oregon’s Solar Radiation Monitoring Laboratory.26   

• Period of record: 1977–present 

• Temporal resolution: 5-minute 

• Spatial coverage: Idaho, Montana, Oregon, Utah, Washington, and Wyoming 

• Spatial resolution: 39 measurement stations (Figure 5-5) 

• Data elements and sources: GHI, DNI, DHI, global irradiance on tilted surfaces 
(various), spectral irradiance (various), and surface meteorological data (temperature, 
relative humidity, dew-point temperature, barometric pressure, precipitation, cloud cover, 
snow depth, etc.) 

• Data quality control and assessment: A two-digit data quality control flag is assigned 
to each data value to identify the type of data (observed, corrected, interpolated, 
computed, missing, or rejected). Radiometers are calibrated annually with periodic on-
site checks with traveling references. 

• Estimated uncertainties: Based on the instrument selections, installation, and O&M 
practices, the estimated uncertainties for corrected daily total irradiances are DNI ± 2%, 
GHI ± 5%, and DHI ± 15% + 5 W/m2 

• Availability: http://solardat.uoregon. edu/SolarData.html 

• Updates: Continuous. 

 
Figure 5-5. Pacific Northwest Solar Radiation Data Network operated by the University of Oregon. 

Image from NREL 

                                                 
26 See http://solardat.uoregon.edu/index.html.  

http://solardat.uoregon.edu/index.html
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5.4.10 NOAA Network 
Coincident with the rehabilitation of historical data from NWS in the 1970s, DOE and NOAA 
cofunded the reconstruction of the NWS solar measurement network. The new network of 39 
stations was instrumented with new Eppley Laboratory, Inc., model PSP pyranometers and 
model NIP pyrheliometers for measuring GHI and DNI. Seven stations had shaded PSP 
pyranometers for measuring DHI. New data acquisition systems were installed to digitally 
sample the radiometer signals at 1-minute intervals and provide strip chart records as a backup 
medium. Radiometers were calibrated annually at NOAA’s solar research facility in Boulder, 
Colorado, using references traceable to the WRR. Network data were processed and 
disseminated on 9-track magnetic tape reels by NCDC. These data represent the most complete 
set of solar resource measurements from the largest federally operated measurement network 
ever fielded in the United States. 

• Period of record: 1977–1980 

• Temporal resolution: Hourly 

• Spatial coverage: United States and territories (Figure 5-6) 

• Spatial resolution: 39 NWS measurement stations 

• Data elements and sources: GHI, DNI, DHI (7 stations), air temperature, relative 
humidity, cloud amounts, barometric pressure, wind speed and direction at 10 m, 
precipitation, snow cover, and weather codes measured according to standard NWS 
operating procedures. Radiation measurements are digitally recorded from 1-minute 
instantaneous samples with redundant strip chart recordings. 

• Data quality control and assessment: Data processing performed at the NCDC using 
standard procedures that included visual inspection of strip chart records. Radiometers 
were calibrated annually in Boulder, Colorado, with reference radiometers traceable to 
the WRR. Monthly data reports and digital data files were produced by the NCDC. 
Measured data from single-black thermopile radiometers were not corrected for thermal 
offsets that were discovered much later. 

• Estimated uncertainties: Based on the instrument selections, installation, and O&M 
practices, the estimated uncertainties for corrected daily total irradiances are DNI ± 2%, 
GHI ± 5%, and DHI ± 15% + 5 W/m2. 

• Availability: NCDC; National Environmental, Satellite, Data, and Information Service; 
NOAA; U.S. Department of Commerce: http://www.ncdc.noaa.gov/  

• Updates: Final release of TD-9736 occurred in 1983. 

http://www.ncdc.noaa.gov/
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Figure 5-6. NOAA Solar Monitoring Network of 39 stations (1977–1980). Image from NREL 

 
5.4.11 Solar Energy and Meteorological Research Training Sites 
Recognizing the need to provide an educated workforce and advance the knowledge of solar 
radiation and meteorological measurements, DOE and the Solar Energy Research Institute (now 
NREL) solicited responses from U.S. universities and colleges to participate in what became the 
Solar Energy and Meteorological Research Training Sites program. Central to the multiyear 
effort was the requirement to maintain the data from 4 of the original 6 participants as part of its 
RReDC (data from Davis, California, and Honolulu, Hawaii, were never made available) and to 
produce a minimum of 12 months of solar resource data from precision instruments with 
measurements collected at 1-minute intervals.  

• Period of record: 1979–1983 

• Temporal resolution: 1-minute 

• Spatial coverage: Fairbanks, Alaska; Atlanta, Georgia; Albany, New York; San Antonio, 
Texas (see Figure 5-7) 

• Spatial resolution: Four measurement stations 

• Data elements and sources: GHI, DNI, and DHI; global irradiance on tilted surfaces 
(varies), infrared irradiances, ultraviolet and other spectral irradiance (varies), and surface 
meteorological conditions (temperature, relative humidity, pressure, visibility, wind 
speed and direction at 10 m, precipitation, etc.). 

• Data quality control and assessment: Research-quality data from proper instrument 
selection, installation, and maintenance. Data were used to develop automated quality-
assessment methods. Measured data from single-black thermopile radiometers were not 
corrected for thermal offsets that were discovered much later. 

• Estimated uncertainties: Based on radiometer types, installation, and O&M, the data 
uncertainties for daily irradiances were GHI ± 7%, DNI ± 3%, and DHI ± 15% + 5 W/m2. 

• Availability: NREL’s RReDC: http://rredc.nrel.gov/solar/old_data/semrts/  

• Updates: Released in 1985. 

http://rredc.nrel.gov/solar/old_data/semrts/
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Figure 5-7. The Solar Energy and Meteorological Research Training Sites program provided the 
first 1-minute measurements of multiple solar resource parameters for the United States. Image 

from NREL 

 
5.4.12 DAYMET 
DAYMET generates daily surfaces of temperature, precipitation, humidity, and GHI throughout 
large regions of complex terrain. The model was developed at the University of Montana’s 
Numerical Terradynamic Simulation Group to meet the needs for high-resolution, daily 
meteorological and climatological data necessary for plant growth model inputs (Thornton, 
Hasenauer, and White 2000; Thornton and Running 1999). A DEM and daily observations of 
minimum and maximum temperatures and precipitation from ground-based meteorological 
stations were used to produce an 18-year daily data set (1980–1997) as a continuous surface at a 
1-km resolution. A wide range of summary and point daily data throughout the conterminous 
United States is available. 

• Period of record: 1980–1997 

• Temporal resolution: Daily 

• Spatial coverage: Continental United States 

• Spatial resolution: 1 km 

• Data elements and sources: GHI, air temperature (minimum and maximum), relative 
humidity, and precipitation 

• Data quality control and assessment: No information 

• Estimated uncertainties: No information 

• Availability: http://daymet.ornl.gov/.  

5.4.13 Solar Radiation Research Laboratory 
The Solar Radiation Research Laboratory was established at the Solar Energy Research Institute 
(now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor 

http://daymet.ornl.gov/
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calibrations of pyranometers and pyrheliometers, and to characterize commercially available 
instrumentation. The Solar Radiation Research Laboratory is an outdoor laboratory located on 
South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking 
Denver. Beginning with the basic measurements of DNI, GHI, and DHI at 5-minute intervals, the 
Solar Radiation Research Laboratory Baseline Measurement System now produces more than 
130 data elements at 1-minute intervals that are available from the Measurement and 
Instrumentation Data Center Web site.27  

• Period of record: 1981–present 

• Temporal resolution: 5-minute (beginning July 15, 1981); 1-minute (beginning January 
13, 1999) 

• Spatial coverage: Golden, Colorado (Figure 5-8) 

• Spatial resolution: Research measurement station. 
 

Data elements and sources: GHI, DNI, DHI (from shadowband and tracking disk), global on 
tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), 
photometric and spectral radiometers, sky imagery, and surface meteorological conditions 
(temperature, relative humidity, barometric pressure, precipitation, snow cover, and wind speed 
and direction at multiple levels). 

Data quality control and assessment: Daily instrument maintenance (M–F) with automated 
data quality control based on real-time examinations of redundant instrumentation and internal 
consistency checks using the SERI QC methodology (Maxwell et al. 1993). Operators are 
notified of equipment problems by automatic e-mail messages generated by the data acquisition 
and processing system. Radiometers are recalibrated at least annually with reference instruments 
traceable to the WRR. An instrument characterization study is available (Wilcox and Myers 
2008, Gueymard and Myers 2009, and Habte et al. 2014). Beginning in 2000, measured data 
from single-black thermopile radiometers are corrected for thermal offsets that were discovered 
at that time. 

• Estimated uncertainties: Based on the instrument selections, installation, and O&M 
practices, the estimated uncertainties for corrected daily total irradiances are DNI ± 2%, 
GHI ± 5 %, and DHI ± 15% + 5 W/m2 (GHI data from thermopile-based detectors under 
clear-sky conditions can exhibit a bias of up to -2.5% if not corrected for thermal offsets). 

• Availability: NREL Measurement & Instrumentation Data Center: 
http://www.nrel.gov/midc/srrl_bms/    

• Updates: Data are updated at least hourly. 

                                                 
27 See www.nrel.gov/midc/srrl_bms.  

http://www.nrel.gov/midc/srrl_bms/
http://www.nrel.gov/midc/srrl_bms
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Figure 5-8. NREL’s main campus and the Solar Radiation Research Laboratory on South Table 

Mountain. Photo from NREL 

 
5.4.14 ESRA 
This atlas is a software package offering solar resources for Europe in a broad sense, from Ural 
to Azores and from Northern Africa to the Polar Circle. It is a powerful tool for architects, 
engineers, meteorologists, agronomists, local authorities, tourism professionals, researchers, and 
students. It covers the period from 1981 through 1990. The volume containing the CD-ROM 
database offers spatial (approximately every 10 km) and temporal knowledge for different time 
scales (from climatologically means for more than 700 stations to hourly values for 7 stations) on 
the solar resources: irradiation (global and its components), sunshine duration, as well as air 
temperatures, precipitation, water vapor pressure, and air pressure in a number of stations. 

The software uses the database in either a map or a station mode at the user’s choice. More than 
50 maps provide information about global irradiation, direct and diffuse components, and the 
clearness index. After a station has been selected, the program looks for all the data available for 
this station. The software includes algorithms covering solar geometry, optical properties of the 
atmosphere, estimation of hourly slope irradiation under cloudless skies, estimation of solar 
irradiation values (from daily to hourly values, conversion from horizontal to titled surfaces), 
spectral irradiance, illuminance, and daily mean profiles of temperature and other statistical 
quantities (central moments, extremes, probability, cumulative probability, and utilization 
curves). Graphics can be displayed in two or three dimensions. 

• Period of record: 1981–1990 

• Temporal resolution: Monthly and annual average daily totals (kWh/m2/day) 

• Spatial coverage: Europe 

• Spatial resolution: 10 km 
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• Data elements and sources: GHI, DNI, and DHI, sunshine duration, air temperatures, 
precipitation, water vapor pressure, and air pressure in a number of stations 

• Data quality control and assessment: No information 

• Estimated uncertainties: No information 

• Availability: Les Presses Mines Paris Tech: http://www.mines-
paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54. See also http://www.soda-
is.com/eng/index.html  

• Updates: No information. 

5.4.15 PVGIS  
PVGIS provides a map-based inventory of solar energy resource and assessment of the 
electricity generation from PV systems in Europe, Africa, and southwestern Asia. It is part of the 
SOLAREC action that contributes to the implementation of renewable energy in the European 
Union as a sustainable and long-term energy supply. As the basis for PVGIS, the Joint Research 
Center of the European Commission has developed a solar radiation database from climatologic 
data homogenized for Europe and available in the ESRA, using the r.sun model and the 
interpolation techniques s.vol.rst and s.surf.rst. These geographic resource analysis support 
system routines are described with references available from the Joint Research Center Web 
site.28  

The model algorithm estimates beam, diffuse, and reflected components of the clear-sky and 
real-sky global irradiance/irradiation on horizontal or inclined surfaces. The total daily 
irradiation (Wh/m2) is computed by the integration of the irradiance values (W/m2) calculated at 
regular time intervals throughout the day. For each time step during the day, the computation 
accounts for sky obstruction (shadowing) by local terrain features (hills or mountains) calculated 
from the DEM. 

The database consists of raster maps representing 12 monthly averages and 1 annual average of 
daily sums of global irradiation for horizontal surfaces, as well as those inclined at angles of 15, 
25, and 40 degrees. In addition to these data, raster maps of clear-sky irradiation, the Linke 
turbidity,29 and the ratio DHI/GHI were computed. 

• Period of record: 1981–1990 

• Temporal resolution: Annual average (kWh/m2) 

• Spatial coverage: Europe 

• Spatial resolution: 1 km aggregated to 5 arc-minutes (~8 km) 

• Data elements and sources: GHI, DNI, DHI, and POA irradiance based on these inputs 
for the European subcontinent: 

                                                 
28 See http://re.jrc.ec.europa.eu/pvgis/solres/solresref.htm.  
29 The Linke turbidity factor is an approximation to model the atmospheric absorption and scattering of clear sky 
DNI solar radiation due to water vapor and aerosols. 

http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54.
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54.
http://www.soda-is.com/eng/index.html
http://www.soda-is.com/eng/index.html
http://re.jrc.ec.europa.eu/pvgis/solres/solresref.htm
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o Monthly averages of daily sums of global and diffuse irradiation measured or 
calculated for 566 ground meteorological stations distributed over the region. The 
averages represent the period from 1981 to 1990; the data were collected within 
the ESRA project. 

o Linke turbidity derived from the global database (Remund et al. 2003), available 
also at the SODA. 

o DEM with a grid resolution of 1 km by 1 km; derived from the USGS SRTM data 

o CORINE land cover with grid resolution of 100 m by 100 m 

o GLC2000 (Global Land Cover 2000) with a grid resolution of 1 km by 1 km 
GISCO database (copyright of the EuroGeographics Association for the 
administrative boundaries). 

o VMAP0 (Vector Map) and ESRI data. 

For the Mediterranean Basin, Africa, and southwestern Asia: 

o HelioClim-1 database, consisting of daily sums of GHI calculated from Meteosat 
Prime images throughout the whole disc. The values represent the period from 
1985 to 2004, and the original spatial resolution is a 15-arc by 15-arc min 
(approximately 30 km by 30 km on the equator); the data were processed by the 
HELIOSAT-2 method (Rigollier, Bauer, and Wald 2000) 

o Linke turbidity derived from the global database (Remund et al. 2003), available 
also at the SODA 

o DEM with original grid resolution of 1 km by 1 km; derived from the USGS 
SRTM data 

o Global Land Cover 2000 with original grid resolution of 1 km by 1 km 

o VMAP0 data. 

• Data quality control and assessment: A cross-validation was applied to estimate the 
predictive accuracy of the modeling approach that better explains the distribution of 
errors further from the locations with known measurements. The cross-validation error 
shows the maximum possible error that might occur at the given point if it were not taken 
into consideration in the interpolation. The average yearly MBE from cross-validation is 
smaller: 1 Wh/m2 (0.03%); but the range of monthly averages of MBE is higher: from -3 
Wh/m2 in January to 4 Wh/m2 in August. The cross-validation RMSE is higher, within 
the interval from 97 to 299 Wh/m2/day (4.7% to 11.2%); and the yearly average is 146 
Wh/m2 (4.5%). 

• Estimated uncertainties: The model accuracy of the PVGIS values in the database was 
evaluated against the input meteorological data used in the computation. Comparing the 
yearly averages of the daily GHI, the MBE is 8.9 Wh/m2 (0.3%) and the RMSE is 118 
Wh/m2 (3.7%). The average RMSE of the PVGIS data is almost the same as it is for 
ESRA, and the PVGIS approach shows better performance from October to April. Its 
advantage is linking the terrain features to changes in radiation fields and considering the 
shadowing effects. Comparisons of GHI data from 563 measurement stations with 
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PVGIS (Version 2) and ESRA raster maps, respectively, indicate that the RMSE of the 
results from the original measurements of daily global irradiation occur within an interval 
of 68 Wh/m2 to 209 Wh/m2. In relative terms, it is within the interval of 3.2% to 7.8%; 
the RMSE values peak in winter months. The comparison of the ESRA interpolation 
approach shows that although the overall accuracy is practically the same (the yearly 
average of the RSME for ESRA is 113 Wh/m2, i.e., 3.5%), the PVGIS modeled values 
are slightly better during the period from October to April and poorer in summer months. 

• Availability: Joint Resarch Center of the European Commission, Institute for Energy, 
Renewable Energy Unit: http://re.jrc.ec.europa.eu/pvgis/download/download.htm.    

5.4.16 METEONORM 
METEONORM 6.1 (Edition 2009) is a comprehensive meteorological reference incorporating a 
catalogue of meteorological data and calculation procedures for solar applications and system 
design at any desired location in the world. METEONORM addresses the needs of engineers, 
architects, teachers, planners, and anyone interested in solar energy and climatology by 
providing access to a unified set of data, models, and software tools. 

• Database Properties 
o Climatological data from more than 8,055 weather stations (1,422 recording GHI) 

o Measured parameters: monthly means of global radiation, temperature, humidity, 
precipitation, days with precipitation, wind speed and direction, and sunshine 
duration 

o Time periods 1961–1990 and 1996–2005 for temperature, humidity, precipitation, 
and wind speed selectable 

o Updated global radiation database for 1981–2000 

o Use of satellite data for areas with low density of weather stations 

o Inclusion of climate change projections (Hadley CM3 model). 

• Model Overview 

o Interpolation models to calculate mean values for any site in the world 

o 1-minute time resolution for radiation parameters 

o Calculation of radiation for inclined surfaces with updated models 

o Enhanced temperature and humidity generation for building simulation 

o Software functions 

o Import of user data (including current data by Internet) 

o Effects of high horizon considered in radiation calculation (high horizon 
calculated automatically for all mountain regions) 

o 28 output formats as well as user-definable output format 

o 5 languages supported: English, French, German, Italian, and Spanish 

o Manual in English, maps and illustrations included on CD-ROM. 

http://re.jrc.ec.europa.eu/pvgis/download/download.htm
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• Period of record: 1981–2000 (GHI database); current user data also accepted by the 
software 

• Temporal resolution: 1-minute and hourly modeled data 

• Spatial coverage: Global 

• Spatial resolution: Data from 8,055 meteorological stations are interpolated to establish 
weather data at any specified point 

• Data elements and sources: Measured: monthly means of GHI, temperature, humidity, 
precipitation, wind speed and direction, and bright sunshine duration. Modeled: 1-minute 
and hourly typical years radiation parameters (GHI, DNI, DHI, global on a tilted surface, 
downwelling infrared, luminance, and ultraviolet-A and -B), precipitation, and humidity 
parameters (dew point, relative humidity, mixing ratio, psychrometric temperature). 

• Data quality control and assessment: With the Version 6.1 database, solar energy 
systems can be consistently simulated in all parts of the world. The interpolation errors 
are within the variations of climate from one year to the next. Extensive testing and 
validation of the radiation models are documented in the “Handbook Part II: Theory” 
available from http://meteonorm.com/images/uploads/downloads/mn71_theory.pdf. 

• Estimated uncertainties: Interpolation of GHI—MBE = 0 W/m2; RSME = 15 W/m2; for 
yearly mean GHI—17 W/m2 (10%) 

• Availability: METEOTEST GmgH, Bern, Germany: www.meteonorm.com 

• Updates: Periodic. 

5.4.17 NASA Surface Meteorology and Solar Energy 
The Prediction of Worldwide Energy Resource project was initiated in 2003 to improve the 
subsequent releases of SSE and to create new data sets applicable to other industries from new 
satellite observations and the accompanying results from forecast modeling. The Prediction of 
Worldwide Energy Resource Web interface currently encompasses the SSE data set, tailored for 
the renewable energy industry, as well as parameters tailored for the sustainable buildings 
community and the bioenergy/agricultural industries.30 In general, the underlying data behind the 
parameters used by each of these industries are the same: solar radiation and meteorology, 
including surface and air temperatures, moisture, and winds. 

The data are on a 1-degree longitude by 1-degree latitude equal-angle grid covering the entire 
globe (64,800 regions). The data are generated using the NASA GEOS Version 4 (GEOS 4) 
Multiyear Assimilation Time Series Data. The GEOS 4 data set has a spacing of 1.25 degrees of 
longitude by 1 degree of latitude. Bilinear interpolation is used to produce 1-degree by 1-degree 
regions. 

The solar energy data are generated using the Pinker and Laszlo shortwave algorithm (Pinker and 
Laszlo 1992). Cloud data are taken from the ISCCP DX data set. These data are on an equal area 
grid with an effective 30-km by 30-km pixel size. The output data are generated on a nested grid 

                                                 
30 See http://power.larc.nasa.gov.  

http://meteonorm.com/images/uploads/downloads/mn71_theory.pdf
http://www.meteonorm.com/
http://power.larc.nasa.gov/
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containing 44,016 regions. The nested grid has a resolution of 1 degree latitude globally and a 
longitudinal resolution ranging from 1 degree in the tropics and subtropics to 120 degrees at the 
poles. This in turn is regridded to a 1-degree equal-angle grid (360 longitudes by 180 latitudes). 
The regridding method is by replication, wherein any grid region that is larger than 1 degree by 1 
degree is subdivided into 1-degree by 1-degree regions, each with the same value as the original. 

SSE estimates were compared to ground site data on a global basis. Radiation parameters were 
compared to data from the BSRN (NASA 2008). Summary results are presented in Table 4-1. 

See the NASA SSE Web site.31 The source data were downloaded from the SSE Web site at 
Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data 
were then converted to the shapefile format. 

• Period of record: July 1983–June 2005 

• Temporal resolution: Monthly and annual average daily totals (kWh/m2/day) 

• Spatial coverage: Global 

• Spatial resolution: 1 degree 

• Data elements and sources: GHI, DNI, and DHI from a satellite remote sensing model. 
Also available: Estimates of clear-sky GHI, DNI, and DHI and tilted surface irradiance, 
temperature, pressure, humidity, precipitation, and wind speed 

• Estimated uncertainties: Based on comparisons to surface measurements available from 
the BSRN, the 23-year monthly mean daily total irradiance uncertainties 
(Bias%/RMSE%) for mid-latitudes have been determined for GHI (0.29%/8.71%), DHI 
(6.86%/22.78%), and DNI (2.40%/20.93%) 

• Availability: NASA SSE Web site: http://eosweb.larc.nasa.gov/sse/ 

• Updates: Release 6.0 data set (January 2008). 

5.4.18 DLR ISIS 
The Deutsches Zentrum für Luft-und Raumfahrt (DLR) irradiance at the surface derived from 
ISCCP cloud data (DLR-ISIS) data set gives an overview of the available TSI worldwide based 
on radiative transfer model results using cloud properties and cloud amount data supplied from 
the ISCCP.32 The radiative transfer model also uses atmospheric aerosol optical thickness 
determined from the NASA-GISS data set (Lohmann et al. 2006). 

With more than 21 years of model estimates, the data can be used to derive stable long-term 
averages, evaluate the variability of irradiance from year to year, and study the effects of extreme 
atmospheric conditions on the irradiance at the surface, for example, after a volcano eruption. 
The three-hour temporal resolution of ISIS enables the study of daily cycles; however, the spatial 
resolution of 280 km by 280 km is too coarse for site selection (see Section 4.3.5 on SOLEMI). 

                                                 
31 See http://eosweb.larc.nasa.gov/sse/. 
32 See http://isccp.giss.nasa.gov. 

http://eosweb.larc.nasa.gov/sse/
http://eosweb.larc.nasa.gov/sse/
http://eosweb.larc.nasa.gov/sse/


109 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

• Period of record: July 1983–December 2004 

• Temporal resolution: 3-hour 

• Spatial coverage: Global 

• Spatial resolution: 280 km by 280 km 

• Data elements and sources: DNI and GHI from a radiative transfer model using cloud 
and aerosol inputs 

• Data quality control and assessment: Comparison of monthly mean daily total DLR-
ISIS DNI to data from 78 stations shows an average underestimation of 3% for monthly 
means. For DLR-ISIS GHI, validation with data from 89 stations indicates an 
overestimation of monthly means by 3%. 

• Estimated uncertainties: No information 

• Availability: http://www.pa.op.dlr.de/ISIS/.  

5.4.19 Historically Black Colleges and Universities Solar Measurement Network 
The Historically Black Colleges and Universities Solar Radiation Monitoring Network operated 
from July 1985 through December 1996. Funded by DOE, the 6-station network provided 5-
minute averaged measurements of global and diffuse horizontal solar irradiance. The data were 
processed at NREL to improve the assessment of the solar radiation resources in the southeastern 
United States (Marion 1994). Three of the stations also measured the DNI with a pyrheliometer 
mounted in an automatic sun tracker. Historical Historically Black Colleges and Universities 
data available online include quality-assessed 5-minute data, monthly reports, and plots. 

In January 1997, the HBCU sites became part of the CONFRRM solar monitoring network. 

• Period of record: 1985–1996 

• Temporal resolution: 5-minute 

• Spatial coverage: Southeastern United States: Daytona Beach, Florida; Savannah, 
Georgia; Itta Bena, Mississippi; Elizabeth City, North Carolina; Orangeburg, South 
Carolina; and Bluefield, West Virginia 

• Spatial resolution: Six measurement stations (Figure 5-9). 

http://www.pa.op.dlr.de/ISIS/
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Figure 5-9. Historically Black Colleges and Universities Solar Monitoring Network (1985–1996). 

Image from NREL 

 
Data elements and sources: GHI, DNI (at three stations), DHI (shadowband) from 
measurements by the Eppley Laboratory, Inc. Model PSP pyranometers and Model NIP 
pyrheliometers mounted in automatic solar trackers (LI-COR Model 2020). Radiometers were 
maintained daily and calibrated annually at NREL using the broadband outdoor radiometer 
calibration process (Myers et al. 2002) with reference standards traceable to the WRR. 

• Data quality control and assessment: The station operators inspected the 
instrumentation daily to ensure that the radiometers were clean and properly aligned. 
Data were processed at NREL using SERI QC software to assign each data value a two-
digit quality flag. Measured data from single-black thermopile radiometers were not 
corrected for thermal offsets that were discovered much later. 

• Estimated uncertainties: Based on the instrument selections, installation, and O&M 
practices, the estimated uncertainties for corrected daily total irradiances are measured 
DNI ± 2%, computed DNI from measured GHI and DHI ± 8%, GHI ± 5%, and DHI ± 
15% + 5 W/m2. 

• Availability: NREL RReDC: http://rredc.nrel.gov/solar/old_data/hbcu/ (includes quality-
assessed monthly data files, monthly summary reports, and monthly irradiance plots) 

• Updates: Final data released in 1997. Measurements from the Elizabeth City State 
University station continue to be available from the NREL Measurement & 
Instrumentation Data Center: http://www.nrel.gov/midc/ecsu/. 

http://rredc.nrel.gov/solar/old_data/hbcu/
http://www.nrel.gov/midc/ecsu/
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5.4.20 Solar and Wind Energy Resource Assessment 
The Solar and Wind Energy Resource Assessment tool provides easy access to high-quality 
renewable energy resource information and data to users around the world. Its goal is to help 
facilitate renewable energy policy and investment by making high-quality information freely 
available to key user groups. Solar and Wind Energy Resource Assessment products include 
geographic information systems and time-series data, along with links to energy optimization 
tools needed to apply these data. To view additional information about the available resources or 
tools, select one of the links in the Resource Information or Analysis Tools section on the Web 
site.33 These products are being offered through a team of international experts and their in-
country partners. 

• Period of record: Moderate resolution: 1985–1991; high resolution: 1998–2002 

• Temporal resolution: Monthly and annual average daily totals (kWh/m2/day) 

• Spatial coverage: Moderate resolution: South America, Central America, Africa, South 
and East Asia, Caribbean, Mexico, Middle East (Israel, Palestine/Jordan, Lebanon, Syria, 
Iraq, Yemen, Saudi Arabia [partial], and Kuwait). High resolution: Guatemala, Belize, El 
Salvador, Honduras, Nicaragua, partial Mexico (Oaxaca), Cuba, Afghanistan, Pakistan, 
partial Mexico (Chiapas, Vera Cruz, northern Mexico to 24 degrees latitude), Dominican 
Republic, Bhutan, India (NW), Ethiopia, Ghana, Ethiopia, Kenya, Sri Lanka, Nepal, 
Bangladesh, Western China, and United Arab Emirates 

• Spatial resolution: Moderate resolution: 40-km; high resolution: 10 km 

• Data elements and sources: GHI, DNI (DHI), and POA from model estimates based on 
surface meteorological observations and/or satellite remote sensing input data 

• Data quality control and assessment: No information 

• Estimated uncertainties: No information 

• Availability: Designed by the Solar and Wind Energy Resource Assessment program 
and maintained by UNEP/GRID-Sioux Falls: 

o http://maps.nrel.gov/swera 

o Products for Brazil were developed by Brazil’s National Institute of Space 
Research and Laboratory of Solar Energy/Federal University of Santa Catarina. 
More information about INPE is available at http://www.inpe.br/ingles/index.php. 
Products developed by DLR are available from 
http://www.dlr.de/tt/desktopdefault.aspx/tabid-2885/4422_read-6548/ 

• Updates: New data sets are made available on a continuing basis. 

5.4.21 HelioClim 
HelioClim is a family of databases comprising solar irradiance and irradiation values available at 
ground level. HelioClim data are modeled from Meteosat imagery covering Europe, Africa, the 
Mediterranean Basin, the Atlantic Ocean, and part of the Indian Ocean. Three databases on the 

                                                 
33 See http://maps.nrel.gov/swera.  

http://www.inpe.br/ingles/index.php
http://maps.nrel.gov/swera
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HelioClim server are presently operated by the Mines ParisTech Armines Center for Energy and 
Processes. The Mines ParisTech Armines receives Meteosat data from Eumetsat and processes 
them in real time. It produces the databases HelioClim that can be accessed through the SODA 
Service. 

• Period of record: 1985–present.  

• Temporal resolution: 15-minute 

• Spatial coverage: Europe and Africa 

• Spatial resolution: 5 km 

• Data elements and sources: Hourly and daily GHI from satellite remote sensing mode 

• Data quality control and assessment: Web-based data quality programs compare the 
data to the extraterrestrial irradiation and data provided by a clear-sky model for the day 
or hour and generate a data quality report. The report explains anomalies in the 
HelioClim data 

• Estimated uncertainties: No information 

• Availability: Mines ParisTech Armines Center for Energy and Processes. 
www.helioclim.org/radiation/index.html. See also: www.soda-is.com/eng/index.html 

• Updates: There are presently three databases: HC-1, HC-2, and HC-3. Work continues 
on the most recent database, HC-3. An improved method HELIOSAT-4 to process 
Meteosat images is under preparation; it will create the database HC-4. 

5.4.22 Solar Data Warehouse 
The Solar Data Warehouse accesses climate data from more than 30 measurement networks 
across the United States and provides hourly and daily data from more than 3,000 stations. 
Measurements from these networks are converted to a uniform format and combined into a 
consistent data set. 

• Period of record: Varies from 5 to 25 years ago to the present 

• Temporal resolution: Hourly and daily  

• Spatial coverage: Continental United States 

• Spatial resolution: More than 3,000 measurement stations 

• Data elements and sources: GHI 

• Data quality control and assessment: Most of the radiometers are medium-quality 
pyranometers. Spatial and temporal comparisons of data among multiple nearby stations 
are used to identify anomalous data. Continual (weekly) adjustments to quality control 
routines because of addition, relocation, and discontinuation of measurement stations. 

• Estimated uncertainties: Data from 13 NSRDB Class 1 measurement stations were 
compared to 16 Solar Data Warehouse stations separated by less than 40 km for the 
period from 2003 to 2005. The average daily error was 9.85%, and the RMSE was 19.0 
W/m2. 

http://www.helioclim.org/radiation/index.html
http://www.soda-is.com/eng/index.html
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• Availability: http://www.solardatawarehouse.com/. 

5.4.23 1991–2005 NSRDB 
The 1991–2005 NSRDB update contains hourly solar radiation (including GHI, DNI, and GHI) 
and meteorological data for 1,454 stations. This update builds on the 1961–1990 NSRDB, which 
contains data for 239 stations (see Figure 5-3). The update includes the conventional time series 
for NSRDB ground stations as well as a 1/10-degree gridded data set from SUNY-Albany that 
contains hourly solar records for 8 years (1998–2005) for the United States (except Alaska above 
60 degrees latitude) for approximately 100,000 pixel locations (at a nominal 10-km by 10-km 
pixel size). To increase data quantity, developers relaxed the standard of serial completeness 
mandated by the 1961–1990 NSRDB. In the update, the stations were classified by data quality. 
The 221 Class I stations have a complete hourly data set for the period from 1991 to 2005 period 
and were produced with the best available input data. The 637 Class II stations have a complete 
hourly data record, but they have a higher uncertainty because of lower quality input data 
(because of NWS automation of weather observations in the mid-1990s). The 596 Class III 
stations contain gaps in the data period but contain at least 3 years of data that may be useful for 
some applications. 

A significant difference between the 1961–1990 and 1991–2005 NSRDBs involves data storage. 
In the original database, measured data were merged with modeled data such that a seamless data 
set of solar radiation values was produced—i.e., the model essentially filled gaps in the measured 
data. The updated database includes separate fields for both modeled and measured data, which 
allows users the flexibility to select modeled, or, if available, measured data for an application. 

See the NSRDB user manual.34  

• Period of record: 1991–2005 

• Temporal resolution: Hourly 

• Spatial coverage: United States 

• Spatial resolution: 1,454 locations and 10-km by 10-km grid (1998–2005) (Figure 5-3). 

• Data elements and sources: Computed or modeled data: ETR on surfaces horizontal and 
normal to the sun, GHI, DNI, and DHI. Measured or observed data: total sky cover, 
opaque sky cover, dry-bulb temperature, dew point temperature, relative humidity, station 
pressure, wind speed and direction, horizontal visibility, ceiling height, precipitable 
water, AOD, surface albedo, and precipitation. 

• Data quality control and assessment: Each data element has been assigned flags 
indicating the source and estimated uncertainty. Thirty-three measurement sites were 
used for the model evaluation based on their instrumentation, period of record, and 
proximity to NWS sites (Figure 5-10). 

                                                 
34 See www.nrel.gov/docs/fy07osti/41364.pdf.  

http://www.solardatawarehouse.com/
http://www.nrel.gov/docs/fy07osti/41364.pdf
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Figure 5-10. Example data quality summary for one of the 1,454 stations in the 1991–2010 NSRDB 

update. Image from Steve Wilcox, NREL  

 
• Estimated uncertainties: Base uncertainty estimates were made for the two models used 

to generate the database. The base uncertainty of the surface model, METSTAT 
(Maxwell 1998), was determined from results that used high-quality model input data and 
compared the model output to measured data. Measured data from single-black 
thermopile radiometers were not corrected for thermal offsets that were discovered much 
later. This base uncertainty was then modified for the increased uncertainty of filled 
meteorological or the Automated Surface Observing System data when such input data 
were used. Similarly, the base uncertainty of the satellite remote sensing model (Perez et 
al. 2002) was determined in the model evaluation and then increased for periods of snow 
cover or high latitude—circumstances known to degrade model performance. Hourly 
uncertainties for modeled data range from 8% during optimal conditions to more than 
25% for less-than-optimal input data. Additional information is available from Zelenka et 
al. (1999). 

• Availability: Data are available from the NREL and NCDC, as shown in Table 5-4 

• Updates: Released in 2007. 
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Table 5-4. NSRDB Data Access Options 

Data Set Distributor URL 

NSRDB solar fields  
(no meteorological data) 

NCDC ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/  

SUNY 10-km gridded data NCDC ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/  

NSRDB statistical 
summaries 

NCDC ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/  

 
5.4.24 TMY3 
The TMY3 data were produced using input data for 1976–2005 from the 1961–1990 NSRDB, 
Version 1.1 and the 1991–2005 NSRDB update. Because the 1961–1990 NSRDB has 239 sites 
and the 1991–2005 NSRDB update has more than 1,400 sites, production of the TMY3 data was 
designed to maximize both the number of stations and the number of years from which to 
characterize the typical conditions (Wilcox and Marion 2008). At sites where data are available 
for 30 years, the base time period for the TMY algorithm spans 1976–2005. For the remaining 
sites, the base time period spans 1991–2005. 

Except for a few changes to the weighting criteria, which account for the relative importance of 
the solar radiation and meteorological elements, the TMY2 and TMY3 data sets were created 
using procedures similar to those developed by Sandia National Laboratories to create the 
original TMYs from the 1952–1975 SOLMET/ERSATZ data (Table 5-1). Minor changes to the 
algorithm were made between the TMY2 and TMY3 production runs. A small change to the 
persistence criteria better accommodates selecting a TMM for periods of records with fewer 
years. Also, computer code was removed that prioritized the selection of months with measured 
solar data because less than 1% of the data records in the 1991–2005 NSRDB update contain 
measured data. The effects of these changes between the TMY2 and TMY3 algorithm were 
evaluated as part of the TMY3 production process. In the context of producing data sets with 
similar characteristics, these effects were small (Wilcox and Myers 2008). In practice, however, 
there are differences in the apparent solar resources among the data available as TMY2, TMY3, 
and the 8-year annual means of the NSRDB/SUNY model. Figure 5-11 illustrates the differences 
of annual mean daily total DNI for 8 years of NSRDB/ SUNY model estimates and the TMY3 
data based on data from 1976 to 2005. 

ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/
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Figure 5-11. Annual mean daily total DNI distribution based on NSRDB/SUNY model results for 

1998–2005 and the corresponding differences between the model and TMY3. (Red circles indicate 
DNI values from TMY3 < NSRDB/SUNY and blue circles indicate TMY3 > NSRDB/SUNYA.) Image 

from Ray George, NREL 

 
Missing meteorological data have been filled to provide serially complete records as input for 
modeling the TMY3 solar radiation fields. Filled meteorological data fields (which are flagged in 
the data file) may also be useful for certain renewable energy applications; however, the filled 
data are not suitable for climatological studies. 

To help guide the development and process validation for the TMY3, a 1961–1990 TMY was 
created with the updated software using data from the TD3282 NSRDB data set distributed by 
the NCDC. This data set was created solely for algorithm evaluation purposes, and no data have 
been released. Missing meteorological fields were filled according to methods used for the 1991–
2005 NSRDB update. To evaluate the effects of drawing from differing periods of time for the 
input data set, we compared each of the following year-span subgroups using the original 1961–
1990 TMY data set as a benchmark: 

• 1961–1990 (30 years for evaluating software algorithm changes) 

• 1976–2005 (for evaluating an updated TMY from a 30-year data set) 

• 1991–2005 (for evaluating an updated TMY from a 15-year data set) 

• 1998–2005 (for evaluating an updated TMY from an 8-year data set). 

The TMY software was run on each data set to create TMYs for the 233 sites common to all 
subgroups (several sites among the 239 in the TMY2 data set did not have sufficient data for this 
analysis). We calculated a mean value for each parameter by site for each subgroup TMY. 
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Although mean values of any data element are only a minor consideration in the TMY algorithm, 
they are one characteristic of climate and are a simple method of detecting large shifts or errors 
in the results. The ranges of the mean differences (the largest possible mean difference at any 
one site) in DNI for all stations, except Alaska and Hawaii, between the original 1961–1990 
TMY2 and TMY3 data interval subgroups) are shown in Table 5-5. 

Table 5-5. Ranges of Mean Station Differences for Hourly DNI 

Data Interval Range of Station-Mean DNI Differencesa (W/m2) 
1961–1990 ± 15 

1975–2005 ± 25 

1991–2005 ± 40 

1998–2005 ± 45 
a Differences computed as “new TMY3” minus original TMY2 hourly DNI values at each of the 
233 stations. Larger mean differences in DNI, approaching -100 W/m2, were computed for 
stations in Alaska and Hawaii and require further study. 

 
The mean biases and standard deviations for these comparison data sets are shown in Table 5-6 
and Table 5-7. The statistics are found by determining the mean of sun-up data for the solar 
parameters and the mean of all data for meteorological parameters. Biases are determined as the 
test TMY data set minus the original 61-90 TMY. This information may give the user some 
indication of the increased uncertainty in the data (particularly noticeable in Table 5-7) with the 
smaller source data sets. The years corresponding to the eruptions of volcanoes El Chichón and 
Mount Pinatubo (1982–1984 and 1992–1994, respectively) are not represented among the 
selected years. The TMY algorithm explicitly excluded these years, because the effects of 
increased aerosols on solar radiation for those years are considered atypical. 

Table 5-6. Bias Differences (Test Data Minus Original 1961–1990 TMY) 

Parameter 1961–1990 1976–2005 1991–2005 1998–2005 

Direct normal W/m2 -5.9 -1.1 -7.9 -1.7 

Global horizontal W/m2 -4.0 -5.7 -15.2 -11.7 

Dry-bulb temperature ºC 0.07 0.39 0.77 0.94 

Dew point temperature ºC 0.08 0.33 0.81 1.08 

Wind speed m/s 0.02 -0.1 -0.3 -0.4 
 

Table 5-7. Standard Deviations of Hourly Data 

Parameter 1961–1990 1976–2005 1991–2005 1998–2005 

Direct normal W/m2 6.7 11.9 21.0 32.5 

Global horizontal W/m2 2.8 5.3 10.0 15.1 

Dry-bulb temperature ºC 0.22 0.37 0.49 0.77 

Dew point temperature ºC 0.28 0.43 0.57 0.82 

Wind speed m/s 0.12 0.20 0.30 0.34 
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Data quality flags were assigned to each hourly data value to indicate the source and uncertainty, 
except for the computed values for extraterrestrial horizontal and extraterrestrial direct normal 
radiation. The source flag indicates whether the data were measured, modeled, or missing, and 
the uncertainty flag provides an estimate of the uncertainty of the data. Usually, the source and 
uncertainty flags are the same as those in the NSRDB, from which the TMY files were derived. 
In the case of the TMY3 data files, the uncertainties are expressed as plus-minus percent rather 
than the coded uncertainty used in the TMY2 files. Uncertainty values apply to the data with 
respect to actual values at the time stamp and not to how typical a particular hour is for a future 
month and day. The uncertainty values represent the plus or minus interval about the data value 
that contains the true value 95% of the time. 

The uncertainty assigned to modeled solar radiation data includes primarily the model bias error 
and, to a lesser extent, the random error component, which could be several times larger for 
partly cloudy skies (Wilcox 2007). For partly cloudy skies, an hour can be composed of large or 
small amounts of sunshine, depending on whether the sun is mostly free of or occluded by the 
clouds. Consequently, modeled hourly values may depart significantly from true values for partly 
cloudy skies. The uncertainty assigned to modeled solar radiation data represents the average 
uncertainty for a large number of model estimates (such as for a month). When averaging large 
data sets, random errors tend to cancel, leaving only the bias error. 

• Period of record: 1991–2005 

• Temporal resolution: Hourly 

• Spatial coverage: United States and territories 

• Spatial resolution: 1,020 locations (Figure 5-12) 

 
Figure 5-12. TMY3 stations. Image from NREL 

 
• Data elements and sources: Computed or modeled data: ETR on surfaces horizontal and 

normal to the sun, GHI and illuminance, DNI and illuminance, DHI and illuminance, 
zenith luminance. Measured or observed data: total sky cover, opaque sky cover, dry-
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bulb temperature, dew-point temperature, relative humidity, station pressure, wind speed 
and direction, horizontal visibility, ceiling height, precipitable water, AOD, surface 
albedo, and precipitation 

• Data quality control and assessment: Each data element has been assigned flags 
indicating the source and estimated uncertainty 

• Estimated uncertainties: Base uncertainty estimates were made for the two models used 
to generate the database. The base uncertainty of the surface model was determined from 
results that used high-quality model input data and compared the model output to 
measured hourly data. This base uncertainty was then modified for the increased 
uncertainty of filled meteorological or the Automated Surface Observing System data 
when such hourly input data were used. Similarly, the base uncertainty of the satellite 
remote sensing model was determined in the model evaluation and then increased for 
periods of snow cover or high latitude—circumstances known to degrade model 
performance. Hourly uncertainties for modeled data range from 8% during optimal 
conditions to more than 25% for less-than-optimal input data. 

• Availability: The NREL RReDC: http://RReDC.nrel.gov/solar/old_data/nsrdb/1991-
2005/tmy3/. 

5.4.25 Management and Exploitation of Solar Resource Knowledge 
The Management and Exploitation of Solar Resource Knowledge (MESoR) project started in 
June 2007 for the purpose of removing the uncertainty and improving the management of solar 
energy resource knowledge. The results of past and present large-scale initiatives in Europe will 
be integrated, standardized, and disseminated uniformly to facilitate their effective exploitation 
by stakeholders. The project will contribute to preparation of the future roadmap for research and 
development and strengthening of the European position in the international field. The project 
includes activities in user guidance (benchmarking of models and data sets; handbook of best 
practices), unification of access to information (use of advanced information technologies; 
offering one-stop-access to several databases), connecting to other initiatives (INSPIRE of the 
European Union, Prediction of Worldwide Energy Resource of NASA, Solar Heating and 
Cooling and Photovoltaic Power Systems of the International Energy Agency (IEA), 
GMES/GEO) and to related scientific communities (energy, meteorology, geography, medicine, 
ecology), and information dissemination (stakeholders involvement, future research and 
development, communication). MESoR is supported as a coordination action by the European 
Commission. 

• Period of record: 1991–2005: Europe and Africa; 1999-2006: Asia 

• Temporal resolution: Hourly 

• Spatial coverage: Europe, Western Asia, Africa, parts of Australia, South America 

• Spatial resolution: 2.5 km 

• Data elements and sources: GHI, DNI, DHI from ground measurements and modeling 
results 

• Data quality control and assessment: Benchmarking data include ground 
measurements available from BSRN, International Daylight Measurement Program, 

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
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Global Atmospheric Watch, and others. Time-series data analyzed for MBE, RMSE, and 
Kolmogrov-Smirnov Test statistics 

• Estimated uncertainties: Sample MBE and RSME results for eight BSRN stations are 
shown in Table 5-8 

• Availability: DLR: www.mesor.org/. 
Table 5-8. Sample MBE and RSME Results 

for Eight BSRN Stations 

Timescale 
GHI DNI 

Mean 
(Wm-2) 

MBE 
(%) 

RMSE 
(%) R2 Mean 

(Wm-2) 
MBE 
(%) 

RMSE 
(%) R2 

Hour 87.3 .93% 8.79 .97 67.8 0.73 6.83 .87 

Day NA NA 1.08 .99 NA NA 3.58 .95 

Month NA NA .95 .99 NA NA .69 .99 

Year NA NA .66 .99 NA NA .92 .99 
 
5.4.26 International Daylight Measurement Program 
The International Daylight Measurement Program was initiated in the framework of Technical 
Committee 3.07 of the International Commission on Illumination by Derrick Kendrick of the 
University of Adelaide, Australia. The year 1991 was designated the International Daylight 
Measurement Year on the occasion of the International Commission on Illumination quadrennial 
conference. Researchers from around the world took this opportunity to start measurement 
stations based on standard conventions developed by the program. In conjunction with the IEA 
Solar Heating and Cooling Program (SHC), the International Daylight Measurement Program 
measurements and modeling of spectral radiation continued through 1994. 

• Period of record: 1991–1994 

• Spatial coverage: Australia, Canada, China, France, Germany, Greece, India, Indonesia, 
Israel, Japan, Korea, The Netherlands, New Zealand, Portugal, Russia, Singapore, 
Slovakia, Spain, Sweden, Switzerland, United Kingdom, and the United States 

• Spatial resolution: 43 measurement stations 

• Data elements and sources: GHI, DNI, DHI, zenith luminance, illuminance (including 
vertical surfaces), air temperature, relative humidity (or dew point), wind speed and 
direction, bright sunshine duration, sky imagers, and sky scanners 

• Data quality control and assessment: International Daylight Measurement Program 
guidelines address the use of physical limits (acceptance thresholds) and comparisons of 
measurements to validated models that account for various sky conditions and solar 
position. The stand-alone program, AQCCIE, is also available.  

• Estimated uncertainties: No information 

• Availability: École Nationale des Travaux Publics: http://idmp.entpe.fr/.  

http://www.mesor.org/
http://idmp.entpe.fr/
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5.4.27 BSRN 
In 1992, the World Climate Research Programme Radiative Fluxes Working Group initiated a 
new BSRN to support the research projects of the World Climate Research Programme and other 
scientific programs needing high-quality and continuous measurements of the irradiances at the 
Earth’s surface. Some years later, the BSRN incorporated into the World Climate Research 
Programme Global Energy and Water Cycle Experiment Radiation Panel. 

The objective of the BSRN is to provide observations of the best possible quality for shortwave 
and long-wave surface radiation fluxes by using a high sampling rate. These readings are taken 
from a small number of selected stations, in contrasting climatic zones, together with collocated 
surface and upper-air meteorological data and other supporting observations. The uniform and 
consistent measurements throughout the BSRN network are used to 

• Monitor the background (least influenced by immediate human activities that are 
regionally concentrated) shortwave and long-wave radiative components and their 
changes by using the best methods currently available 

• Provide data to validate and evaluate satellite-based estimates of the surface radiative 
fluxes 

• Produce high-quality observational data for comparison to climate model calculations and 
to develop local and regionally representative radiation climatological analyses. 

At present, approximately 60 BSRN stations are in operation. These stations measure different 
sets of radiation values. Some carry out only basic measurements according to the BSRN 
Technical Plan (Hegner et al. 1998). Other stations carry out other measurements in addition to 
the basic measurements. Some stations also perform synoptic observations, upper air soundings, 
ozone measurements, and expanded measurements. More stations are being established.  

The BSRN database is based on PANGAEA (named after the Pangaea theory). This Publishing 
Network for Geoscientific & Environmental Data is an Open Access library aimed at archiving, 
publishing, and distributing georeferenced data from Earth system research. Data descriptions 
(metadata) of all data sets are visible and include the principal investigator’s name and e-mail for 
contact. Online data access is offered to anybody who accepts the data release guidelines.35 

In addition to the Web-based PANGAEA access, the original station-to-archive files (without 
derived quantities and quality flags) can be obtained via the FTP server.36  

The BSRN data have become widely known for their research quality and are used for model 
development and validation. 

• Period of record: 1992–present  

• Temporal resolution: 1-minute 

• Spatial coverage: Global 
                                                 
35 See www.pangaea.de/PHP/BSRN_Status.php to access the data and see a list of current stations.    
36 See ftp.bsrn.awi.de. Contact Gert.Koenig-Langlo@awi.de. 

http://www.pangaea.de/PHP/BSRN_Status.php.
ftp://ftp.bsrn.awi.de/
mailto:Gert.Koenig-Langlo@awi.de
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• Spatial resolution: 40 measurement stations (Figure 5-13). 

 
Figure 5-13. BSRN. Image from NREL 

 
Data elements and sources: The number and type of measurements vary with station. Basic 
radiation measurements include GHI, DNI, DHI, downwelling infrared irradiance, upwelling 
infrared irradiance, and upwelling (reflected) shortwave irradiance. Measurements are from 
radiometers of various manufacturers. Synoptic meteorological observations, upper air 
measurements, and numerous expanded and supporting measurements are available.  

Data quality control and assessment: Measurement station design and O&M practices must 
conform to established BSRN requirements. The station scientist is responsible for 
measurements and data quality. For each month, the station scientist produces a station-to-
archive file, according to Hegner et al. (1998).  

• Estimated uncertainties: The World Climate Research Programme of the WMO 
established the standards of measurement for the BSRN. The stated accuracies are 15 
W/m2 for broadband solar measurements and 110 W/m2 for thermal infrared 
measurements. 

• Availability: The WRMC provides Web-based and FTP data access: 
www.bsrn.awi.de/en/home/  

• Updates: The BSRN data archive is maintained by the WRMC and updated regularly: 
www.bsrn.awi.de/en/home/wrmc/. 

5.4.28 Surface Radiation Network 
The Surface Radiation (SURFRAD) Network was established in 1993 through the support of 
NOAA’s Office of Global Programs to support climate research with accurate, continuous, long-
term measurements of the SRB over the United States. 

Currently, seven SURFRAD stations operate in climatologically diverse regions: Montana, 
Colorado, Illinois, Mississippi, Pennsylvania, Nevada, and South Dakota. This represents the 
first time that a monitoring network in the United States was designed to measure the complete 

http://www.bsrn.awi.de/en/home/
http://www.bsrn.awi.de/en/home/wrmc/
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SRB. The site selection process for SURFRAD was a collaborative effort among NOAA, NASA, 
and university scientists. Locations were chosen with the intent of best representing the diverse 
climates of the United States. Special consideration was given to places where the landform and 
vegetation are homogeneous throughout an extended region so that the point measurements 
would be qualitatively representative of a large area. 

Each station is equipped to measure broadband solar and infrared irradiances, including DNI, to 
compute the net surface fluxes. Measurements of the spectral irradiance are collected to provide 
the relative amounts of ultraviolet and photosynthetically active radiation. Photometric 
measurements at selected solar irradiance wavelengths can be used to estimate the AOD 
(important for determining DNI and amounts of forward scattering—circumsolar irradiance), 
total column ozone, and precipitable water vapor. Surface meteorological measurements, 
including all-sky digital cameras for measuring cloud cover, complete the instrumentation. 

Data are downloaded, quality controlled, and processed into daily files that are distributed in near 
real-time by anonymous FTP and the Internet. Observations from SURFRAD have been used to 
evaluate satellite-based estimates of surface radiation and to validate hydrologic, weather 
prediction, and climate models. Quality assurance is built into the design and operation of the 
network and ensure continuous high-quality product. 

The station in Boulder, Colorado, is an operating SURFRAD station and serves as a calibration 
facility for network instruments as well as for spectroradiometers operated by several North 
American agencies that monitor ultraviolet radiation. 

• Period of record: 1993–present 

• Temporal resolution: Data are reported as 3-minute averages of 1-second samples 
before January 1, 2009, and 1-minute averages on and after January1, 2009. 

• Spatial coverage: United States 

• Spatial resolution: Seven stations: Montana, Colorado, Illinois, Mississippi, 
Pennsylvania, Nevada, and South Dakota (Figure 5-14) 

 

 
Figure 5-14. The SURFRAD network is operated by the Global Monitoring Division, Earth Systems 

Research Laboratory, NOAA. Image from NREL 
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• Data elements and sources: GHI, DNI, DHI, downwelling infrared irradiance, 
upwelling infrared irradiance, and upwelling (reflected) shortwave irradiance. 
Photosynthetically active radiation, solar net radiation, infrared net radiation, air 
temperature, relative humidity, wind speed and direction (10 m AGL), and all-sky images  

• Data quality control and assessment: The stations are regularly maintained and data are 
downloaded, quality controlled, and processed into daily files that are distributed in near 
real time by anonymous FTP and the World Wide Web. Radiometers are recalibrated 
annually, and field measurements are compared to standards as part of the instrument 
exchange procedure. Data elements are assigned an individual quality-assessment flag. 
The redundancy of three-component solar measurements (global, direct, and diffuse) 
provides a useful tool for quality control of the SURFRAD data by examining the internal 
consistency of these measurements at any time interval. 

• Estimated uncertainties: Based on the instrument selections, installation, and O&M 
practices, the estimated uncertainties for corrected daily total irradiances are measured 
DNI ± 2%, computed DNI from measured GHI and DHI ± 8%, computed GHI from 
measured DNI and DHI ± 5%, measured GHI corrected for unshaded pyranometer 
thermal offsets ± 5%, and DHI ± 15% + 5 W/m2. SURFRAD has adopted the standards 
for measurement set by the BSRN as developed by the World Climate Research 
Programme of the WMO. The stated accuracies are 15 W/m2 for broadband solar 
measurements and 110 W/m2 for thermal infrared measurements. To achieve these 
ambitious goals, the broadband solar instruments are calibrated at NREL against 
standards traceable to the WRC in Davos, Switzerland. 

• Availability: NOAA, Earth Systems Research Laboratory, Global Monitoring Division, 
in Boulder, Colorado: ftp://ftp.srrb.noaa.gov/pub/data/surfrad and www.srrb.noaa.gov.  
SURFRAD data are also submitted to the BSRN archives: www.bsrn.awi.de/  

• Updates: Continuous data updates accommodate the latest measurements. 

5.4.29 Integrated Surface Irradiance Study 
The Integrated Surface Irradiance Study (ISIS) is a continuation of earlier NOAA surface-based 
solar monitoring programs. ISIS addresses questions of spatial distributions and time trends at 
sites selected to be regionally representative and long-term continuous records of observations. 
Data from 1995 to 2008 are archived at the NCDC from 10 stations: Albuquerque, New Mexico; 
Bismarck, North Dakota; Desert Rock, Nevada; Hanford, California; Madison, Wisconsin; Oak 
Ridge, Tennessee; Seattle, Washington; Salt Lake City, Utah; Sterling, Virginia; and 
Tallahassee, Florida. Data consist of 15-minute averaged measurements with standard deviations 
and minimum/maximum values based on 1-second samples of GHI using the Eppley Laboratory, 
Inc., Model PSP pyranometer; DNI using a Model NIP pyrheliometer; diffuse irradiance using 
models PSP or 8-48 pyranometers; ultraviolet-B (UVB) irradiance using a solar light ultraviolet 
biometer; GHI using a silicon cell pyranometer, plus its maximum, minimum, photosynthetically 
active radiation, and GHI using RSRs with photodiode detectors; and SZA. 

The network ceased operation in January 2006 because of funding limitations. 

• Period of record: 1995–2006 

ftp://ftp.srrb.noaa.gov/pub/data/surfrad
http://www.bsrn.awi.de/
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• Temporal resolution: 15-minute 

• Spatial coverage: Continental United States 

• Spatial resolution: 9 stations (Figure 5-14) 

• Data elements and sources: GHI, DNI, DHI, and Global UVB 

• Data quality control and assessment: These data are provisional. The NOAA Solar 
Radiation Research has attempted to produce the best data set possible; however, the data 
quality is constrained by measurement accuracies of the instruments and the quality of 
the calibrations. Regardless, the Solar Radiation Research Branch attempts to ensure the 
best quality possible through quality assurance and quality control. The data were 
subjected to automatic procedures as the daily files were processed. Data were subjected 
only to this first-level check and a daily eye check before being released. 

Quality assurance methods were in place to protect against premature equipment failure 
in the field and postdeployment data problems. For example, all instruments at each 
station were exchanged annually for newly calibrated instruments. Calibrations were 
performed by world-recognized organizations with pyranometers and pyrheliometers 
calibrated at NREL to the WRR. Calibration factors for the UVB instrument were 
transferred from three standards maintained by the Solar Radiation Research Branch’s 
National UV Calibration Facility in Boulder. In general, all of the standards collected by 
the Solar Radiation Research Branch and NREL were traceable to the National Institute 
of Standards and Technology or its equivalent. 

• Estimated uncertainties: Based on the instrument selections, installation, and O&M 
practices, the estimated uncertainties for corrected daily total irradiances are measured 
DNI ± 2%, computed DNI from measured GHI and DHI ± 8%, GHI ± 5%, and DHI ± 
15% + 5 W/m2 

• Availability: NOAA, Earth Systems Research Laboratory, Global Monitoring Division, 
Boulder, Colorado: ftp://ftp.srrb.noaa.gov/pub/data/isis/ 

• Updates: First released in 1995 and updated through 2005 with subsequent 
measurements. 

5.4.30 Satel-Light 
The European database of daylight and solar radiation is based on Meteosat images and a model 
that uses an estimation of cloud cover to produce a cloud index to produce GHI data. The DNI 
data are derived from GHI using the Page model (Page 1996). The Satel-Light server provides 
these data in map form for all of Europe. 

• Period of record: 1996–2000  

• Temporal resolution: 30-minute 

• Spatial coverage: Europe 

• Spatial resolution: ~5 km 

• Data elements and sources: DNI, GHI, DHI, POA, horizontal illuminance, tilted 
illuminance, and sky luminance distribution. 

ftp://ftp.srrb.noaa.gov/pub/data/isis/
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• Data quality control and assessment: The satellite-based model results have been 
compared to measurements from 25 stations. End user products generated from the 
satellite estimates were also compared to those generated from ground measurements at 
five stations (Dumortier 1998; Olseth and Skartveit1998) 

• Estimated uncertainties: Measurements of GHI from 25 sites in Europe were used to 
evaluate model performance for all sky conditions. The resulting annual mean bias 
deviation for GHI ranged from -1% to 3% and a root mean square deviation ranged from 
20% (south of Europe with a high frequency of sunny skies) to 40% (north of Europe 
with a high frequency of cloudy skies) 

• Availability: www.satellight.com/indexgS.htm.  

5.4.31 Atmospheric Radiation Measurement Program 
The Atmospheric Radiation Measurement Climate Research Facility is a DOE national user 
facility for the study of global change by the national and international research community. 
Research at this facility includes the study of alterations in climate, land productivity, oceans or 
other water resources, atmospheric chemistry, and ecological systems that may alter the capacity 
of the Earth to sustain life. Measuring solar and infrared irradiances is an important source of 
data for this research. Continuous measurements of surface radiative flux are made in three 
geographic areas of the world. Beginning in 1997, Atmospheric Radiation Measurement began 
operating 23 solar infrared stations in the southern Great Plains located in parts of Kansas and 
Oklahoma. Ground Radiation (GNDRAD) and Sky Radiation (SKYRAD) stations are located at 
three sites in the tropical western Pacific and two sites in the North Slope of Alaska. Known for 
the research quality of these measurements, the data are used for a variety of atmospheric model 
validations. 

Important ancillary data, such as AOD, precipitable water vapor, cloud cover and optical depth, 
surface albedo, spectral irradiance, and atmospheric profiles of temperature, pressure, and water 
vapor are also available from the Atmospheric Radiation Measurement facility 

• Period of record: 1997–present 

• Temporal resolution: 20-second instantaneous samples and 1-minute averages of 2-
second scans 

• Spatial coverage: Southern Great Plains, North Slope of Alaska, and tropical western 
Pacific (Figure 5-15). 

http://www.satellight.com/indexgS.htm
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Figure 5-15. DOE has operated the 23 Atmospheric Radiation Measurement stations in the 

southern Great Plains since 1997. Image from DOE  

 
• Spatial resolution: 23 stations (southern Great Plains), 2 stations (North Slope of 

Alaska), and 2 stations (tropical western Pacific) 

• Data elements and sources: GHI, DNI, DHI, DIR, UIR, and upwelling (reflected) 
shortwave irradiance. Measurements from the Eppley Laboratory, Inc., Model PSP (GHI, 
DHI, and upwelling shortwave irradiance), Model 8-48 (DHI after 2000), Model NIP 
(DNI), and Model PIR (DIR and UIR) 

• Data quality control and assessment: Measurement stations are inspected daily (North 
Slope of Alaska and tropical western Pacific stations) to biweekly (southern Great Plains, 
except for central facility stations that are maintained daily) for preventative and 
corrective maintenance. Data are processed using data quality-assessment methods based 
on SERI QC, checked visually as time-series plots, and compared to relevant ancillary 
measurements and model outputs (e.g., clear-sky solar irradiance model results). The 
pyranometer data are corrected for known thermal offsets. The Atmospheric Radiation 
Measurement Data Quality Office reports on the health and status of the data at hourly 
and daily intervals. Each measurement is assigned a data quality flag. Radiometers are 
calibrated annually at the Radiometer Calibration Facility near Lamont, Oklahoma, and 
control and reference radiometers are compared to standards maintained by NREL. All 
pyranometers and pyrheliometer calibrations are traceable to the WRR. 

• Estimated uncertainties: Based on the instrument selections, installation, and O&M 
practices, the estimated uncertainties for corrected daily total irradiances are measured 
DNI ± 2%, GHI ± 5%, and DHI ± 15% + 5 W/m2 

• Availability: DOE, Atmospheric Radiation Measurement Climate Research Facility: 
www.arm.gov. Data sets are labeled SIRS, SKYRAD, and GNDRAD. SIRS data are also 
submitted to the BSRN archives: www.bsrn.awi.de/  

• Updates: Continuous data updates accommodate latest measurements, and value-added 
products are available. 

http://www.bsrn.awi.de/
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5.4.32 3TIER Solar Time Series 
The data set covering the Western Hemisphere is based on more than 12 years of half-hourly 
high-resolution (roughly 1-km) visible satellite imagery from GOES data (GOES East, GOES 
West, and GOES South) using the broadband visible wavelength channel. The satellite data set 
was collected from January 1997 to present and has been processed to create hourly values of 
GHI, DNI, and DHI at a horizontal resolution of roughly 3 km. 

3TIER processes the satellite images based on a combination of in-house research and 
algorithms published in peer-reviewed scientific literature. These algorithms contain parameters 
and coefficients that are based on empirical fits to observational data. To develop and validate 
their model, 3TIER used observations from the SURFRAD, BSRN, NSRDB, Bureau of 
Meteorology (Australia), National Institute of Water and Atmospheric Research (New Zealand), 
Indian Meteorology Department, Linke Turbidity Database from Mines ParisTech, and snow 
data from the 24-km data set developed by the National Snow and Ice Data Center. 

The basic processing scheme follows the SUNY model (Perez et al. 2002) with a few key 
improvements made within the 3TIER algorithms. These include a higher spatial and temporal 
resolution, an in-house developed seasonal variability correction factor, an in-house developed 
empirical fitting of the data to ground station measurements, and the integration of instantaneous 
irradiance values to determine the hourly value. Each improvement results in a lower RMSE 
compared to the NREL/NSRDB Update/SUNY data set (1998–2005). 

• Period of record: January 1997–Present 

• Temporal resolution: ~30-minute instantaneous and 1-hour averages 

• Spatial coverage: Western Hemisphere and much of Asia and Oceania 

• Spatial resolution: 2 arc-min (~ 3 km) 

• Data elements and sources: GHI, DNI, and DHI from model estimates based on satellite 
remote sensing input data 

• Data quality control and assessment: The irradiance data are based on the model 
developed by Perez et al. (2002) with proprietary improvements for increased spatial and 
temporal resolution, seasonal variability correction factor, empirical fitting of the 
modeled data to ground station measurements, and integration of instantaneous irradiance 
values to determine the hourly value. Surface radiation measurements from ground 
stations operated for the BSRN, SURFRAD, and other regional networks as identified by 
the NSRDB were used to validate the 3TIER model 

• Estimated uncertainties: Analyses of continental United States based on 36 observing 
stations for the years 1998 through 2005 indicate the following RSME and bias values in 
W/m2 for each irradiance component: GHI [77/4], DNI [181/4] and DHI [63/4] 

• Availability: 3-TIER: www.3tier.com/products/  

• Updates: Continuous. 

http://www.3tier.com/products/
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5.4.33 Clean Power Research—SolarAnywere 
SolarAnywhere is a Web-based service that provides hourly estimates of the solar irradiance 
based on satellite images and atmospheric data using algorithms developed and maintained by 
Dr. Richard Perez and the State University of New York at Albany (Perez et al. 2002). 

• Period of record: 1998–present 

• Temporal resolution: Hourly 

• Spatial coverage: Continental United States and Hawaii 

• Spatial resolution: 10 km. 

• Data elements and sources: GHI, DNI, wind speed, and ambient air temperature 

• Data quality control and assessment: The Perez/SUNY model was developed and has 
been validated using surface irradiance measurements from selected SURFRAD stations 

• Estimated uncertainties: Based on comparisons to measured data from 10 stations in the 
United States (Perez et al. 2002), the annual average hourly RSME and MBE for GHI are 
14.0% and 0.8%, respectively, and for DNI, 29.8% and 0.9%, respectively 

• Availability: Clean Power Research: www.cleanpower.com/SolarAnywhere 

• Updates: Model version control information available. 

5.4.34 1991–2009 NSRDB 
The 1991–2009 NSRDB update contains hourly solar radiation (including GHI, DNI, and GHI) 
and meteorological data for 1,454 stations.  

This update builds on the 1991–2005 NSRDB, which contains data for 1,454 stations (see Figure 
5-3). The update includes the conventional time series for NSRDB ground stations as well as a 
1/10-degree gridded data set from Clean Power Research (CPR) that contains hourly solar 
records for 12 years (1998–2009) for the United States (except Alaska above 60 degrees latitude) 
for approximately 100,000 pixel locations (at a nominal 10-km by 10-km pixel size). In the 
update, the stations were classified by data quality. The 242 Class I stations have a complete 
hourly data set for the 1991–2005 period and were produced with the best available input data. 
The 618 Class II stations have a complete hourly data record, but they have a higher uncertainty 
because of lower quality input data (due to NWS automation of weather observations in the mid-
1990s). The 594 Class III stations contain gaps in the data period but contain at least 3 years of 
data that may be useful for some applications. 

As mentioned in the NSRDB user manual (Wilcox, 2012), a significant difference between the 
1961–2005 and 1991–2009 NSRDBs is that the latter contains updated satellite data from Clean 
Power Research, which implemented several model refinements in SolarAnywhere since the 
SUNY data set that was used in the 1991–2005 update. Further, the latter has a different cloud 
cover input to the METSTAT model in which the ASOS cloud algorithm for the METSTAT 
model was changed after research showed that ASOS tends to overestimate cloud cover at 
cloudy sites. However, other than these changes, the 1991–2009 data set is similar to the 1991–
2005 update. 

http://www.cleanpower.com/SolarAnywhere
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• Period of record: 1991–2009 
• Temporal resolution: Hourly 
• Spatial coverage: United States 
• Spatial resolution: 1,454 locations and 10-km by 10-km grid (1998–2009) (Figure 5-2) 
• Data elements and sources: Computed or modeled data: ETR on surfaces horizontal and 

normal to the sun, GHI, DNI, and DHI. Measured or observed data: total sky cover, 
opaque sky cover, dry-bulb temperature, dew point temperature, relative humidity, station 
pressure, wind speed and direction, horizontal visibility, ceiling height, precipitable 
water, AOD, surface albedo, and precipitation 

• Data quality control and assessment: Each data element has been assigned flags 
indicating the source and estimated uncertainty. Thirty-three measurement sites were 
used for the model evaluation based on their instrumentation, period of record, and 
proximity to NWS sites (Figure 5-10) 

• Availability: NSRDB user manual: http://www.nrel.gov/docs/fy12osti/54824.pdf and 
http://RReDC.nrel.gov/solar/old_data/nsrdb/1991-2010/. 

5.4.35 SOLEMI 
SOLEMI is a service set up by DLR providing high-quality irradiance data based on Meteosat-
data with a nominal spatial resolution of 2.5 km and half-hourly temporal resolution. Solar 
radiation maps and hourly time series will be available for almost half the Earth’s surface.  

• Period of record: No information 

• Temporal resolution: 30-minute 

• Spatial coverage: Global 

• Spatial resolution: 2.5 km 

• Data elements and sources: No information 

• Data quality control and assessment: No information 

• Estimated uncertainties: No information. 

• Availability: DLR: www.solemi.com/home.html  

• Updates: No information. 

5.4.36 GeoModel Solar—SolarGIS 
The SolarGIS database is derived from Meteosat, GMS, MTSAT, and GOES satellite data and 
ECMWF and NOAA atmospheric parameters using in-house algorithms and computing 
infrastructure. 

• Period of record: 1994, 1999, 2007–present (depends on the region) 

• Temporal resolution: 15- and 30-minute 

• Spatial coverage: Land area, worldwide, between latitudes 60° N and 50° S 

• Spatial resolution: ~3 km (at the equator) down scaled to ~80 m using SRTM-3 DEM 

http://www.nrel.gov/docs/fy12osti/54824.pdf%20.
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/
http://www.solemi.com/home.html
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• Data elements and sources: DNI, GHI, DHI, GTI, and air temperature (2-m AGL) and 
others 

• Data quality control and assessment: Model data compared to measurements from 50 
stations in Europe and North Africa (Ineichen 2014) 

• Estimated uncertainties: See Table 5-9 for summary statistics based on comparisons to 
measurement stations in Europe and North Africa 

• Availability:  http://solargis.info. 
Table 5-9. SolarGIS Validation Summary 

Component Number of Stations MBE RMSE 

GHI 18 0% 17% (hourly) 
8% (daily) 
4% (monthly) 

DNI 18 -2% 34% (hourly) 
21% (daily) 
10% (monthly) 

 
5.4.37 EnMetSol 
The EnMetSol database is based on Meteosat images and a model based on a cloud index to 
derive irradiance data. Data can be requested at the University of Oldenburg. 

• Period of record: 1995–present—1995–2004 is based on Meteosat First Generation(MFG); 
2005–present is based on Meteosat Second Generation (MSG) 

• Temporal resolution: 30-minute for MFG; 15-minute for MSG 

• Spatial coverage: Continental Europe, Canary Islands, Turkey, and Israel 

• Spatial resolution: 2.5 km for MFG; 1 km for MSG 

• Data elements and sources: GHI, DHI and DNI 

• Data quality control and assessment: The EnMetSOL model has been validated with 18 
stations for the 2004–2011 period (Ineichen 2013). Moreover, a daily quality check is 
performed with data from more than 300 European meteorological stations 

• Estimated uncertainties: Based on comparisons to measured data from 18 stations 
(Ineichen 2013), the annual average hourly RSME and MBE for GHI are 17.0% and 0.8%, 
respectively, and for DNI, 37% and 0%, respectively. The deviation of site-specific long-
term mean values of GHI range from -6% to +5% for non-mountainous sites (average 3%) 
and for DNI from -14% to 14% for all sites (average 9%) 

• Availability: University of Oldenburg: www.energiemeteorologie.de. 

5.4.38 MACC-RAD McCloud  
The preoperational atmosphere service of Copernicus is currently provided through the FP7 
projects MACC and MACC-II. MACC combines state-of-the-art atmospheric modeling on 
aerosols with Earth observation data to provide information services covering European air 
quality, global atmospheric composition, climate, and UV and solar energy. Within the radiation 

http://solargis.info/
http://www.cleanpower.com/SolarAnywhere
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subproject (MACC-RAD), existing historical and daily updated databases HelioClim-3 and 
SOLEMI for monitoring incoming surface solar irradiance are further developed. The new 
service is called HelioCllim-4, and it is jointly provided by DLR and Mines ParisTech Armines. 
Data are made available both via the Copernicus portal and the SODA service. 

• Period of record: 2004–present 

• Temporal resolution: 15-minute 

• Spatial coverage: Europe/Africa/Middle East/Atlantic Ocean. 

• Spatial resolution: Spatial resolution is the original pixel of the Meteosat image. 
Approx. 3 km at satellite nadir and 5 km at mid-latitude. The nearest satellite pixel is 
chosen 

• Data elements and sources: Global and direct irradiances 

• Data quality control and assessment: Input quality control, regular benchmarking 
against ground stations, regular monitoring the consistency and detecting possible trends. 

• Estimated uncertainties: Results for 15-minute means of irradiance compared to BSRN 
stations: bias for global irradiance between 4 W m-2 and 34 W m-2; RMSE is 
approximately 90 W m-2 for most stations; and its relative value ranges between 15% and 
20% of the mean observed irradiance for stations in desert and Mediterranean climate and 
between 26% and 45% for rainy climate with mild winters. Bias for direct irradiance is 
between -44 W m-2 and +46 W m-2, and the RMSE ranges from 81 W m-2 (32% of the 
mean observed irradiance) to 189 W m-2 (64%) 

• Availability: Copernicus: http://www.gmes-atmosphere.eu; SODA: http://www.soda-
pro.com  

• Updates: Continuous. 

5.4.39 MACC-RAD McClear 
The fast clear-sky model called McClear implements a fully physical modeling replacing 
empirical relations or simpler models used before. It exploits the recent results on aerosol 
properties and total column content in water vapor and ozone produced by the MACC project. 
Data are made available both via the Copernicus and the SODA service. 

• Period of record: 2004–present 

• Temporal resolution: 1-minute 

• Spatial coverage: Global 

• Spatial resolution: Interpolated to the point of interest 

• Data elements and sources: Global and direct irradiances for clear-sky cases 

• Data quality control and assessment: Input quality control, regular benchmarking 
against ground stations, regular monitoring of consistency and detecting possible trends 

• Estimated uncertainties: For global irradiance, the correlation coefficient ranges 
between 0.95 and 0.99; for direct irradiance: 0.86 and 0.99. The bias for global irradiance 

http://www.gmes-atmosphere.eu/
http://www.soda-pro.com/
http://www.soda-pro.com/
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ranges from -14 and 25 W m-2 to -49 and +33 W m-2 for direct irradiance. The RMSE 
ranges from 20 W m-2 (3% of the mean observed global irradiance) and 36 W m-2 (5% of 
the mean observed global irradiance) and 33 W m-2 (5% of the mean observed direct 
irradiance) and 64 W m-2 (10% of the mean observed direct irradiance) 

• Availability: Copernicus: http://www.gmes-atmosphere.eu; SODA: http://www.soda-
pro.com   

• Updates: Continuous. 

  

http://www.gmes-atmosphere.eu/
http://www.soda-pro.com/
http://www.soda-pro.com/
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6 Applying Solar Resource Data to Solar Energy 
Projects 

This chapter provides a summary of the tools and techniques for evaluating specific solar energy 
sites based on all available information as well as guidance on steps to improve the on-site 
determination of the solar resource relevant to the type of solar technology that is being 
considered. The overall goal is to help the project developer and investor obtain the best 
estimates of the solar resource and weather information to address four stages of a solar energy 
project evaluation and operation (see Figure 6.1). 

 
Figure 6-1. The four stages of a solar power plant project 

 
Ideally, a potential solar power plant site will have several years of high-quality on-site data, 
using the measurement and metrology procedures described in Chapter 3, in formats directly 
relevant to the type of technology being considered; however, in the current solar energy market, 
such data are not usually available, and project developers must rely on a number of techniques 
to provide the most accurate determination of site resource characteristics based on any available 
information sources. In the United States, these data sources might include some limited on-site 
measurements of varying quality, access to nearby measurements that may or may not be 
precisely applicable to the site because of spatial and temporal variability, access to satellite- 
derived irradiance estimates, or access to nearby modeled ground stations, such as those found in 
the NSRDB. In the latter case, both hourly statistics throughout the entire length of the NSRDB 
period and TMY data representing either 15 years or 30 years of solar resource data modeled 
from ground observations might be available. Most ground stations in the NSRDB provide 
modeled estimates of the solar resource based on cloud cover and other weather observations 
obtained at the station and not on actual solar measurements (see Chapter 5). 

Assuming that no high-quality on-site data are available during the site screening and 
prefeasibility stages, annual energy estimates must be derived from historical data sets such as 
the NSRDB or satellite-derived data from commercial vendors. During feasibility assessments, 
including engineering analysis and due diligence, some periods of high-quality measurements are 
assumed to be available at the site; however, these relative short-term measurements must be 
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extrapolated to long-term records that capture seasonal trends and the interannual variability of 
solar resources for the site. During the system acceptance and site operation stages, reliance 
should be on high-quality ground-based measurements, perhaps supplemented to some extent by 
ongoing satellite-derived measurements for the region. 

The project developer should consult Table 6-1 when evaluating sites through the various stages 
of project development. 

Table 6-1. Site Evaluations 

Evaluation 
Step Question Solutions and Insights 

Site 
selection 

What proposed site 
location(s) need(s) to be 
evaluated? 

 

 Has a single site been 
chosen? 

If not, is the developer making a choice from among two or 
more sites or “prospecting” from a wider area? If choosing 
among multiple sites, the developer will benefit from using 
maps and graphical techniques to evaluate both the 
estimated resource and the uncertainty of those resource 
estimates. See examples below. 

Predicted 
plant output 
throughout 
its project life 

How can short-term data 
sets that provide pro-
jections throughout the next 
few years be extended to 
long-term (30-y) projections 
so that projections of cash 
flow throughout the life of 
the project can be made? 

Different locations may have different interannual variability—
e.g., locations more subject to a monsoon effect will have 
higher interannual variability in the summer months. Typically, 
on-site data cover at most a few years, so we discuss 
procedures for extrapolating these data sets to long-term 
projections using longer-term (up to 45-y) modeled irradiance 
data as well as how to relate the nearest ground stations to 
site-specific data. 

Temporal 
performance 
and system 
operating 
strategies 

How important are 
seasonal and diurnal 
patterns of the solar 
resource? 

Many solar energy projects will produce electricity for the 
public utility grid. If time-of-day pricing has been implemented 
for the consumer, an understanding of the diurnal patterns 
and monthly mean values during those months when time-of-
day pricing is in place may be more important than the 
estimate of the annual average. For example, if a CSP 
project includes thermal storage, the need to analyze when 
the system will build up storage compared to when the 
system provides power to the grid during daylight hours also 
emphasizes the importance of understanding the diurnal 
patterns. Thermal storage greatly mitigates the effect of 
system intermittency, but accurate or realistic daily, hourly, or 
subhourly solar radiation data may still be needed. 

 Are data needed that most 
closely match actual 
concurrent utility load data 
to conduct grid-integration 
studies and system 
intermittency? 

In this case, daily, hourly, or even subhourly data may be 
needed for a specific time period, which cannot be provided 
by TMY data. 
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Evaluation 
Step Question Solutions and Insights 

 What are the temporal and 
spatial characteristics of the 
data sources available to 
the developer, and how do 
these characteristics 
influence the evaluation of 
system performance?  

Example: Measured solar data apply to a specific location 
and are usually recorded at short time intervals (6 min), then 
averaged to the desired time interval (often hourly in the early 
project phase) 

Example: Surface modeled data (e.g., NSRDB/METSTAT) 
are somewhat smoothed, because they are based on cloud 
cover observations that can be seen from a point location, 
typically a circle 40-km in radius, averaged over an 
approximate 30-min period 

Example: Satellite data usually represent snapshots in time 
because of the scanning characteristics of the onboard 
radiometers and are typically considered to range from nearly 
instantaneous to approximate 5-min averages. For SUNY 
satellite data used in the NSRDB, the individual pixel size is 1 
km, and the pixel is at the center of the 10-km grid cell. 
Newer satellite-based methodologies now average the 1-km 
pixel to 3-km or 5-km grid cells. 

 
6.1 Data Applications for Site Screening and Prefeasibility 

Assessment 
6.1.1 Example for Review of Data Sources: DNI in the United States 
In the first step, the available data sources for the region of interest and the irradiance component 
of interest have to be reviewed. Several sources were presented in Chapter 4 and Chapter 5. The 
following example is for DNI and locations in the United States, mostly in the Southwest. The 
selected data sources in Table 6-2 are those most likely to be used by a project developer for a 
concentrating solar technologies (CST) plant in this region. Similar data sources may be 
available for other locations (see Chapter 3).  

Table 6-2. Data Sources for DNI Estimation 

Source Period of 
Record 

Origin Comments 

NSRDB/SUNY 
 
Gridded 
monthly and 
annual mean 
DNI values 

1998–
2009 

CPR 
SolarAnywhere 
(See Chapter 4) 

Monthly and annual mean values 
available for uniform grid (CONUS 
and HI) with 0.1-degree spacing. DNI 
values for approximately 2,100 grid 
cells in the Southwest have been 
adjusted upward to correct for 
satellite model underestimates of 
DNI in areas of high surface albedo 
(snow, sand, salt flats). 

NSRDB/SUNY  
 

Gridded hourly 
DNI values 

1998–
2009 

CPR-
SolarAnywhere  
(See Chapter 4) 

Hourly time-series data available 
from NREL’s Solar Prospector and 
NCDC Web sites in different formats. 
The mean DNI values have not been 
corrected for the surface albedo 
issue. 

TMY2 1961–
1990 

1961–1990 
NSRDB (See 
Chapter 4) 

The annual and monthly mean 
DNI for the selected “typical” 
months may not agree with the 
30-year monthly means for the 
same station. 
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Source Period of 
Record 

Origin Comments 

TMY3 1991–
2005 
 
1976–
2005 

1991–2005 
NSRDB (See 
Chapter 4) 

Based on 24 years of data for sites 
near the 1961–1990 NSRDB 
locations and 12 years of data for 
remaining sites. Years with large 
amounts of stratospheric aerosol 
loading caused by volcanic eruptions 
are excluded from the selection. The 
mean DNI values may NOT agree 
with the long-term means for the 
same location. 

DNI 
measurements 

1977–
present 

Various (See 
Chapter 4) 

Measurement networks in 
operation 1977–1980 (NOAA 
network) and 1993–present 
(SURFRAD) 

Surface 
weather 
observations 

1961–
2010 

NSRDB (See 
Chapter 4) 

Observations for 15-year and 30-
year data sets available from 
NSRDB (usually NWS stations 
located at airports). Most reliable 
source. 

Modeled 
weather data 

1998–
2005 

North 
American 
Regional 
Reanalysis 

Data from model with 32-km spatial 
resolution and 3-h time resolution. 
Advisable for user to calculate 
average temperature and dew point 
for times of interest for comparison to 
other (best available observations 
from nearest site) 

 
6.1.2 The Site Screening Process 
In the early stages of project development, a prefeasibility assessment of possible sites is 
undertaken. A desired outcome at this stage is the estimated annual energy production that could 
be expected from the solar energy system in various proposed locations. Historical solar resource 
data sets are generally used in this stage, often in the form of maps, such as the NSRDB/SUNY 
gridded maps (Table 6-2). These data sets use a fairly consistent methodology to reliably identify 
the regions of highest solar potential. The maps should be used to make a preliminary assessment 
of solar resource, assuming a fairly large potential for error (approximamtely 15%). Thus, if a 
desirable level of solar resource is 7.0 kWh/m2/day, sites with mapped resource values down to 
approximately 6.0 kWh/m2/day should be considered. 

Examples of a “first order” prefeasibility assessment include the analysis of CST potential in the 
southwestern United States conducted by NREL’s Concentrating Solar Power Program (Mehos 
and Perez 2005).37 Using geographic information system screening techniques, resource maps 
were developed that highlighted regions potentially suitable for project development after 
various land use constraints—such as protected land areas, sloping terrain, and distance from 
transmission—were taken into consideration (Figure 6-2 and Figure 6-3). The results of these 
studies show that even with these constraints vast areas in the southwestern United States are 
                                                 
37 See www.nrel.gov/csp/maps.html.   

http://www.nrel.gov/csp/maps.html
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potentially suitable for CST development (Mehos and Perez 2005). Maps such as these have 
been valuable to project developers to highlight specific regions in which various levels of site 
prospecting and prefeasibility analysis can take place. 

 
Figure 6-2. Geographic information system analysis for available site selection using DNI 

resource, land use, and 3% terrain slope. Image from NREL 

 
Figure 6-3. Geographic information sytsem analysis for available site selection using DNI 

resource, land use, and 1% terrain slope. Image from NREL 

With the introduction of powerful, easy-to-use tools such as the Solar Advisor Model,38 
greenius,39 and the NREL Solar Power Prospector Web site,40 many analysts now expect to use 
time-dependent modeling of their prospective solar systems as part of the preliminary analysis. 
                                                 
38 See www.nrel.gov/analysis/analysis_tools_tech_sol.html.   
39 See http://freegreenius.dlr.de/. 
40 See http://maps.nrel.gov/node/10/.  

http://www.nrel.gov/analysis/analysis_tools_tech_sol.html
http://freegreenius.dlr.de/
http://maps.nrel.gov/node/10/
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Considerable care must be taken to choose the correct irradiance data sets for input to the model. 
Experts recommend multiple years of at least hourly input data, rather than data from only one 
year or even TMYs, to assess the effects of interannual variability of the solar resource on year-
to-year system performance. Each hourly data set should be evaluated at least to determine 
whether the monthly mean values from hourly data match the best estimate of monthly mean 
values at the proposed site (Meyer et al. 2008). 

6.1.3 Influence of AOD 
For solar energy projects, a key step in site screening is to implement a concept we call clean air 
prospecting. This is of special importance for CST projects, because DNI is more strongly 
affected by AOD than GHI is. In deserts and other areas with high solar resource, most sites have 
low annual cloud cover. In these locations, the annual average irradiance is strongly influenced 
by the AOD. Knowing the AOD characteristics is vital to assessing the solar resource and the 
performance of solar installations. 

AOD is a measure of haze and smoke effects in irradiance that are not caused by clouds. Sources 
of AOD include dust and particulates, air pollution, smoke from wildfires and agricultural 
burning, and sea salt (near coastlines). Solar facilities should, if possible, be sited at locations 
that are protected from sources of these aerosols. For rural areas with low AOD, the irradiance 
averages from the satellite-derived (gridded) data are more likely to be correct, if it can be 
confirmed that the area is indeed protected from sources of aerosols. 

The analyst should ask the following questions about the site: 

• What are sources of potential aerosols? These may include:  

o Dust storms 

o Air pollution 

o Fires 

o Proximity to urban areas 

o Proximity to power plants, mines, etc. 

• Does the area have good visibility most of the time? Are distant hills or features visible 
without the effects of haze? 

o No visible haze would indicate that the AOD is indeed low, and, therefore, the 
irradiance is similar to the modeled map values. 

o If the area is known to have some form of visible haze, aerosols may (or may not) 
be a problem at the site. Further research or measurements may be necessary. 

Typically, areas on the fringes of cities are zones of higher uncertainty in AOD. Also, areas on 
the fringes of metropolitan areas may be good candidates for solar energy for economic and 
infrastructure reasons. New measured irradiance data may be necessary to resolve whether a site 
is sufficiently protected from sources of aerosols.  
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6.1.4 Comparison of Satellite-Derived Irradiation Resource Data Using 
Geographic Information System Tools 

A study conducted by the MESoR project in Europe (Beyer et al. 2009) provides insights into the 
spatial distribution of uncertainty of the estimates of irradiance by relative cross-comparison of 
five data sources: METEONORM, Satel-Light, NASA SSE, SOLEMI, and PVGIS. 

The map-based comparison is performed as a type of relative benchmarking of solar databases. It 
does not point to the “best” database, but it gives an indication of the user’s uncertainty at any 
location in the region by comparing data from different sources. Because the spatial products 
cover different periods of time, this comparison also introduces uncertainty resulting from the 
interannual variability of solar radiation. The maps of long-term averages of irradiance yearly 
sums are cross-compared. The map of standard deviation from the average indicates the 
combined effect of differences among the databases, and in this study it is used as an indicator of 
model uncertainty. 

As shown on the maps of standard deviation (Figure 6-4), the solar industry in some regions in 
Europe might expect higher variability in the outputs from the analyzed databases. These 
variations are found primarily in complex climatic conditions, such as mountainous regions, and 
density and quality of input data. Significant differences are found in some regions with high 
DNI potential, such as the Balkan region, Greece, parts of the Iberian Peninsula, and Italy. 

  
 

Figure 6-4. Yearly sum of DNI as calculated from five modeled data sets: METEONORM, PVGIS, 
NASA SSE, Satel-Light, and SOLEMI—(left) average of five databases (kWh/m2) and (right) relative 

standard deviation (%). Graphics modified from Beyer et al. (2009)  

 
The MESoR map comparison studies have provided the following results: 

• There is an inherent difference between in-situ (ground) and satellite observations and in 
the methods of processing these data. Databases relying on the interpolation of ground 
observations (PVGIS Europe and partially METEONORM) are sensitive to the quality 
and completeness of ground measurements (especially those from earlier time periods) 
and density of the measurement network. PVGIS and METEONORM include long-term 
statistical averages, and some geographical regions may show higher uncertainty because 
of the lower concentration of measurement sites with varying data consistency. The 
satellite-derived databases (NASA SSE, SOLEMI, and Satel-Light) offer time series with 
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high time resolutions (3-hour, hourly, and 30-minute data, respectively) and provide 
spatially continuous coverage, but the results may be affected by a higher uncertainty of 
the cloud cover assessment when the ground is covered by snow and ice and for low sun 
angles; however, these regions are typically not high-value sites for solar energy 
applications. 

• Terrain effects (e.g., differences in AM, shadowing by surrounding terrain) play a role in 
solar radiation modeling in hilly and mountainous regions. The spatial resolution of the 
input data and the selected DEM have direct impacts on the accuracy of the estimates. A 
coarse-resolution DEM results in a smoother spatial pattern of solar irradiance, which 
also affects the regional mean of the irradiation; however, a high-resolution DEM is 
presently being used only in METEONORM and PVGIS. Databases with coarser spatial 
resolution (e.g., NASA SSE) provide global estimates; however, for studies at a local 
level they may show higher deviations, because they smooth out local climate and terrain 
features.  

• Like cloudiness, AOD is highly variable throughout time and space. Its measurement 
requires sophisticated instrumentation and complex satellite models. The numerous AOD 
data sets available to the solar radiation modeling community come from various sources; 
however, except for a few—such as AERONET,41 the SKYNET branch measurements,42 
and temporally highly resolved modeled data such as MATCH (M. Schroedter-
Homscheidt and A. Oumbe, 2013)—they represent only climate (averaged) values for a 
few years, which do not address high-frequency changes. 

• DNI is sensitive to the determination of cloud index that attenuates the solar irradiance 
reaching the surface. With the older generation satellites (MFG), effects of snow, ice, and 
fog interfere with cloud detection. This often leads to underestimation of DNI, especially 
in mountainous regions. The current satellite instrument MSG Spin Enhance Visible and 
Infrared Imager, in orbit since 2004, provides a high-quality calibrated signal with stable 
and known properties over continents, and with high information potential of 11 
multispectral channels. This shows promising improvements in cloud detection. 

• DNI is more sensitive than GHI to atmospheric parameters. The quality and spatial detail 
of satellite-derived databases are determined by input data used in the models, primarily 
parameters describing the optical state of the atmosphere, such as Linke atmospheric 
turbidity, or the analytical data sets (ozone, water vapor, and aerosols). After cloudiness, 
the effect of aerosols represented by AOD is the most important variable affecting DNI 
(Gueymard and George 2005). 

The studies conducted so far provide only a preliminary outline of the state of the art of current 
knowledge of irradiance. Such a data comparison as provided above does not fully address the 
needs of the solar energy industry, so further work is needed to improve our knowledge and 
decrease the uncertainties. 

                                                 
41 See http://aeronet.gsfc.nasa.gov. 
42 See http://www.euroskyrad.net/sites.html.  

http://aeronet.gsfc.nasa.gov/
http://www.euroskyrad.net/sites.html
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6.2 Data Applications for Feasibility, Engineering, and Financial 
Assessments  

After one or more candidate sites have been selected for an engineering feasibility assessment, a 
common problem facing solar power plant project developers is how to produce data sets that 
allow for the most reliable calculation of annual or interannual system performance when only 
short-term ground measurements, along with other estimated data sources, are available. In the 
wind energy industry, solutions to this problem are known as measure-correlate-predict 
(Thøgersen et al. 2007). Measure-correlate-predict is based on various statistical procedures 
whereby short-term on-site measurements are related to nearby long-term measurements to 
obtain estimates of a site’s long-term wind energy potential and interannual variability. The 
correlation is then used to predict resources for the new site. 

The problem tends to be more complex for the wind industry than for the solar industry, because: 

• Wind resources are generally much more variable spatially than solar resources 

• Wind characteristics can vary significantly with height above the ground, which 
complicates the comparison of short-term to long-term measurements if the heights of the 
two measurement systems are different 

• Wind resources must take speed and direction into account, which complicates the 
measure-correlate-predict statistical procedures 

• With the exception of reanalysis data or surface wind observations from national weather 
service stations, reliable long-term data relevant to a proposed wind site, such as those 
developed from a satellite methodology for solar radiation resources, are generally 
lacking for wind resources. 

For these reasons, it is not necessary to employ some of the more complex measure-correlate-
predict methods available in the literature for wind energy assessments to solar power plant 
analyses. We suggest a simpler approach that should be reasonably viable. Readers interested in 
learning more about wind-energy-related measure-correlate-predict methods will find a good 
summary of various approaches in Thøgersen et al. (2007). 

The degree of accuracy required for system performance and energy yield estimates depends on 
the stage of project development, as follows: 

• Prefeasibility stage. Specific sites are evaluated to determine whether they may be 
suitable for development and thus require more comprehensive evaluation. 

• Feasibility stage. Sites have been selected for actual project implementation, and system 
design and energy performance estimates become very important. At this stage, more 
comprehensive knowledge of the annual resource as well as seasonal and diurnal 
characteristics, with known accuracies, is required. After (or concurrent with) this 
detailed analysis, due diligence on the chosen project site is required, which involves 
accurate cash flow analysis throughout the life of the project. In this case, accurate long-
term site performance estimates are required, and the variability of the system output 
from year to year (caused by interannual variability of the resource, again within well-
established confidence limits) is required. 
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6.2.1 Extrapolating Short-Term Measured Data Sets 
The basic methodology for obtaining an estimate of the annual solar resource suitable for 
prefeasibility analysis that can be used to make energy yield estimates is to acquire available 
long-term site estimates, such as satellite-derived estimates or nearby modeled station values 
(such as those available through the NSRDB or TMYs). These data sets and their uncertainties 
have already been described in previous chapters and sections. When short-term on-site 
estimates from new solar radiation measurements are available, they can be used to reduce the 
uncertainty of the modeled estimates (Gueymard and Wilcox 2009). This process becomes 
critical in the project feasibility and due diligence stages of project development. 

Three methods by which we can combine the short- and long-term data to obtain a more accurate 
estimate of the long-term solar resource (such as what may be needed for project feasibility 
studies) are discussed here. 

The ratio method assumes that at least two independent data sets are available: an on-site 
measurement data set (presumed to be relatively short term), and a long-term climatological data 
set, such as a satellite-derived database or a nearby long-term measurement station or modeled 
data. Ideally, at least part of the two data sets should be concurrent. If there is no concurrency in 
the data, the ratio method can still be applied, but the uncertainty of the resulting long-term on-
site data profile will likely be much higher than if concurrent data periods are available. This 
method is described in Gueymard and Wilcox (2009). Basically, the method involves calculating 
the ratios of a selected averaging period of the concurrent data sets, such as hourly or monthly 
averages, then applying these ratios to the balance of the long-term data set to produce a long-
term estimate for the site. 

There are several important considerations to applying this approach, especially if the long-term 
data set involves the use of satellite-derived data for the same location as the site data. Although 
the ratio method removes biases between the short-term and long-term data sets, the biases may, 
in fact, vary from year to year or from season to season. Variations in biases suggest that the 
cross-correlation between the two concurrent measurement sources is less than 1.0, and lower 
cross-correlation values indicate more uncertainty associated with extrapolating short-term data 
to long-term means (Gueymard and Wilcox 2009). Consider these possible scenarios: 

• In an ideal scenario, there is low month-to-month variability in biases between the 
reference data and on-site measurements. Under these circumstances, a simple correction 
factor based on the ratio method should be acceptable for extrapolating the short-term 
data set. 

• A second scenario is high random variability between the short-term on-site data and the 
long-term reference data source, meaning that an accurate extrapolation to a longer-term 
value at the site will have high uncertainty. 

• A third scenario is when there are strong seasonal trends in the data, which may require 
additional years of on-site data to better confirm or define the trend. This scenario would 
ultimately lead to long-term extrapolations with low uncertainty. 

A second method is to combine two different data sets by weighting each. They could be 
weighted equally, or, as suggested by Meyer et al. (2008), the weighting can be determined 
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based on the inverse of the uncertainty of each data set. By assuming that the deviations from 
truth follow a normal distribution and are statistically independent, the Gaussian law for error 
propagation can be applied. Meyer et al. (2008) then provide curves showing how the additional 
data sets do not need to be of the same high quality as the base data set to add value to the 
combined data sets (Figure 6-5).

 

Figure 6-5. Resulting uncertainty when combining a base data set of 2%, 4%, 6%, or 8% overall 
uncertainty with an additional data set of varying quality. Figure from Meyer et al. (2008)  

 
Meyer et al. (2008) show that by using more than two data sets, the resulting quality of the 
combined data set can be even further improved. For example, when the base data set has an 
uncertainty of 4%, the resulting data set can be improved by adding two data sets with a 
moderate 7% quality rather than 10%; however, if the two additional data sets have an 
uncertainty of 10% or more, the base data set cannot be improved. Therefore, data sets with such 
high uncertainties should not be used. If the analyst uses this method, he or she should be 
prepared to demonstrate that the incorporated data sets are truly independent and there are no 
correlations (similar instrumentation and measurement protocols, common estimates for model 
parameters such as aerosols or clouds). This methodology of combining the uncertainties of 
various input data sets to provide the resulting uncertainty of the “best guess” DNI estimate for a 
site is elaborated in a more recent paper by Meyer et al. (2008).  

Another approach for reducing the uncertainty of long-term satellite-derived data sets using high-
quality short-term ground data has been developed by Schumann et. al (2011). In this method, 
the frequency distribution of the ground-based data is used to improve the satellite-derived data. 
Their method has resulted in greatly reduced bias errors and improved Kolmogorov-Smirnov 
Integrals in the satellite data, especially for DNI estimates, even when as little as 3 months of 
ground data are available. In particular, their method shows that a full year of ground data are 
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sufficient to obtain significant improvements in long-term satellite-derived DNI data sets, 
resulting in greatly improved bankable data for purposes of financing large-scale CSP plants. 
Although their method was less successful in improving GHI data, they point out that there is 
generally less of a need to correct GHI data. 

Their method builds on results from earlier studies (Carow 2008, Beyer et. al 2010) in which the 
frequency distribution, rather than a simple ratio technique, is employed to improve the satellite-
derived data, noting that the frequency distribution of DNI has a strong influence on the power 
production of CSP plants, just as the wind speed frequency distribution has a strong influence on 
the power production of wind plants. The method of “training” the satellite data using 
overlapping time series from ground measurements is demonstrated in Figure 6-6. The 
differences in cumulative frequency distributions (training data) are applied to the test satellite 
data, producing a corrected data set (upper right image). The lower panels then show how the 
cumulative frequency distributions of the satellite data are “mapped” to a new frequency 
distribution based on the correction factors developed with the ground data. 

 
Figure 6-6. Upper left: Cumulative frequency distribution for training time of overlapping ground 
data and satellite time series. The arrow illustrates the difference between the two curves. Upper 
right: Corrected satellite cumulative frequency distribution for test period. Lower left: Mapping of 
original satellite irradiance values to original cumulative frequency distribution (arrow and bottom 
right image). The original cumulative frequency distribution is first mapped to produce a corrected 

cumulative frequency distribution, then the corrected cumulative frequency distribution is 
adjusted to satellite values. Green: ground data from training set; magenta: satellite data from 

training set; purple: satellite data from test set; yellow: corrected satellite data. Figure from 
Schumann et al. (2009) 

 
Despite the improvements offered by the method of Schumann et al (2009), significant biases in 
the DNI estimates remain, as demonstrated by Killius and Schroedter-Homscheidt (2012). A 
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method to reduce the bias errors to near zero, and especially to minimize the biases of the highest 
radiation values that are used for design purposes, has been presented by Mieslinger et al. (2014). 
The method was tested against two high-quality ground stations: Plataforma Solar de Almería 
(southern Spain) and Tamanrasset (Algeria); and four different satellite-derived methodologies: 
DLR, University of Oldenburg Department of Energy and Semiconductor Research, GeoModel 
Solar, and HelioClim-3. Unlike the previous methods, the method of Mieslinger et al. (2014) 
takes into consideration not only the systematic but also the random errors that are found when 
comparing satellite to ground data. Random errors are caused by parallax errors as well as by the 
difficulty in determining the vertical thickness of clouds from the satellite data used in the four 
methodologies applied here.  

The basis of the adaption method is to apply a third order polynomial relationship rather than a 
simple regression model, to account for both the systematic and the random errors. The 
polynomial function also addresses results in significant improvements in the differences 
between measured and modeled data at high irradiance values. Using the criteria that an adapted 
data set should demonstrate a relative mean bias comparable to high-quality ground 
measurements (+2%), the polynomial adaption method was shown to exceed this limit, 
especially when the HC3 data are removed from the testing. It was also demonstrated that 
forcing the bias to zero considerably reduces the Kolmogorov-Smirnov integrals of the satellite-
derived values. Nevertheless, to validate this method further, it is clear that additional testing 
should be applied to more sites to investigate the performance of the method in different climatic 
zones and topographies.  

Other methods have been proposed in the literature (Bender et al. 2011; Cebecauer and Suri 
2010; Gueymard et al. 2012; Harmsen, Tosado-Cruz, and Mecikalski 2014; and Thuman, 
Schnitzer, and Johnson 2012), and they are typically used by commercial data providers. This is 
because the short-term measured data set must first be subjected to a stringent quality-control 
procedure and then to more or less complex statistical methods. There is currently no study that 
compares the performance of these methods, the details of which are often proprietary. Finally, 
an innovative optimal interpolation method has been proposed to perform the necessary 
corrections to long-term data time series at a regional scale rather than for one specific site at a 
time (Ruiz-Arias et al. 2015). 

6.2.2 Interannual Variability and Exceedance Probabilities 
Studies have also been undertaken to determine how long surface measurements at a proposed 
site should be taken before the true long-term mean is captured. This is important when no 
concurrent data sets are available and yet project finance decisions must still be made. Another 
way to look at the problem is to ask how representative a short-term (perhaps 1-y) measurement is 
to the “true” climatological (nominally 30-y) mean? In the wind industry, a rule of thumb is that 
it takes 10 years of on-site wind measurements to obtain a mean annual wind speed that is within 
± 10% of the true long-term mean, which is generally required by financial institutions. But in a 
case with only 1 year or 2 years of on-site measurements, these data may be all that are available 
to a financial institution conducting due diligence on a project. 

Gueymard and Wilcox (2009) begin to address this problem through an analysis of the 8-year 
SUNY data set used in the updated 1991–2005 NSRDB with coincident measured hourly data 
from 37 sites from various networks in the conterminous United States; however, only 4 stations 
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had continuous measurements for 25 years or more, which are needed to determine the 
climatological average. These stations are Burns, Eugene, and Hermiston, Oregon, and NREL’s 
Solar Radiation Research Laboratory station on top of South Table Mountain near Golden, 
Colorado. 

Tomson, Russak, and Kallis (2008) show that the mean annual global irradiation in any year is 
virtually independent of the previous year, which means that 11 years of on-site measurements 
does not represent the long-term mean. Thus, Gueymard and Wilcox (2009) examined the long-
term data from the 4 stations mentioned to address questions about how many years of 
measurements it takes to converge to the long-term mean and whether the variability in annual 
radiation changes significantly from one site to another. 

For these stations, the results from Gueymard and Wilcox (2009) show that, first, there is much 
lower interannual variability in GHI than in DNI. GHI is almost always within ± 5% of the true 
long-term mean after only one year of measurements, regardless of which year these 
measurements are taken. The situation is quite different for DNI, however. After only one year of 
measurements, the study shows that the estimate of the average DNI is no better than ± 10% to 
± 20% of the true long-term mean. Another way of stating this finding is that the COV for DNI is 
generally two to three times higher than the COV for GHI. 

At 2 of the sites, upward of 10 years of measurements are required to be within ± 5% of the true 
long-term mean, which is consistent with the findings in the wind energy industry.  

Financial institutions prefer to evaluate the risk of uncertainty with solar resource data in terms 
of exceedance probabilities (e.g., P50 or P90). P50 is the result of achieving an annual energy 
production based on the long-term median resource value. For this value, the probability of 
reaching a higher or lower energy value is 50:50. For example, TMYs represent the P50 value. 
For an exceedance probability of P90, the risk that an annual energy value is not reached is 10% 
(90% of all values in a distribution exceed the P90 value).  

Figure 6-7 provides other interesting observations about multiple years of DNI measurements, 
particularly for Hermiston and Burns, which are in the arid eastern part of Oregon. Even in 
Golden, Colorado, a cloudier than average year will strongly influence negative anomalies, but 
these generally converge to zero more quickly than do the positive anomalies. Another factor, 
especially for clear sites, is that AOD becomes the primary influence on DNI variability; events 
such as volcanic eruptions or regional forest fires produce significant AOD anomalies that could 
be the main cause of the asymmetries shown in Figure 6-7. 

These results indicate the importance of having a second, independent quality data set, such as a 
satellite-derived data set, available to reduce the uncertainty of the long-term average DNI 
estimates for a proposed CST site to provide reasonable due diligence of a plant’s estimated 
performance throughout the life of the project.  
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Figure 6-7. Number of years to stabilize DNI and GHI in (clockwise from upper left) Burns, Oregon; 
Eugene, Oregon; Hermiston, Oregon; and Golden, Colorado. Image modified from Gueymard and 

Wilcox 2009 

 
6.2.3 Examples of Mean Irradiance Estimation and Hourly Data Selection Using 

NSRDB/SUNY, TMY3, and Measured Data 
Example 1 is a proposed trough plant near Harper Lake, California. Harper Lake is actually a dry 
lake bed with very bright salt deposits on the surface. Our goals for exploring this example are 
to: 

• Determine the best estimate for mean DNI by month and year for a chosen site 

• Procure one or more years of time series DNI (and weather) data for use in time-
dependent modeling (CST plant models or electrical grid models). 

To quickly assess the annual and monthly mean DNI, we use the Solar Prospector43 with satellite 
ground surface imagery (from Google Maps) as background. Figure 6-8 shows nine 
NSRDB/SUNY grid cells in the area near Harper Lake in the Mojave Desert. The values of 
average DNI can be obtained from Solar Prospector. The upper value is the mean DNI from the 
hourly data, which is not corrected for specular reflection. The lower is from the map, which has 
been corrected for this artifact.  

Next, we look at the mean DNI values, by month, for the 8 years of data from the 1998–2005 
NSRDB. We do this for the desired location and a few nearby locations. If the map value and the 
hourly averaged values are different by more than 0.2 (kWh/m²/day), the grid-cell map is 
corrected. In this example, Cells B1 and B2 were corrected. If the candidate site for a solar 
power plant is located in cell B2, the analyst could select hourly data from another cell that has 
                                                 
43 See http://maps.nrel.gov/node/10/.  

http://maps.nrel.gov/node/10/
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not been corrected, such as A2 or C2. This procedure will ensure that the hourly simulations 
(e.g., Solar Advisor Model for CSP)44 produce results that are more consistent with the mean 
value at the proposed site. 

 
Figure 6-8. NSRDB/SUNY 10-km grid cells near Harper Lake, California. The upper values shown in 
text boxes are averaged from (uncorrected) hourly files. The lower values are averaged DNI from 

corrected maps. The values in red show uncorrected time series mean values, which are 
substantially lower than the corrected map values. Image from NREL 

 
In general, cells in need of correction have bright or uneven areas, especially near the center. 
Adjacent cells with a darker, more uniform background will have more reliable hourly DNI data. 
The goal is to select the correct time series to match the estimate of the mean values. The Google 
Map shows that the time-series data from the selected cell (B2) should not be used, because the 
time series produces different (lower) means. The SUNY team developed corrections to this 
artifact; in the near future, corrected maps will be available that avoid this problem. 

Although it is not recommended, the user could choose one of the TMY2 or TMY3 data sets to 
act as a surrogate for the 8 years of data. If a TMY2 or TMY3 data set is proposed as a surrogate 
for this site, the data set should be carefully evaluated for applicability of the mean values in 
space and time. Figure 6-9 shows the monthly DNI values for the C2 site and the nearby 

                                                 
44 See www.nrel.gov/analysis/sam/. 

http://www.nrel.gov/analysis/sam/
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Daggett, California, TMY3, which is a higher quality, Class I, NSRDB site. In this case, the 
TMY3 may be a suitable surrogate for the site-specific SUNY data. 

 
Figure 6-9. Monthly mean DNI for Harper Lake (Cell C2) and Daggett TMY3. Minimum and 

maximum values for cell C2 are also shown for each month. Image from NREL  

 
Example 2 is a proposed plant site near Desert Rock, Nevada. We assume for this example that 
we have chosen the NSRDB/SUNY data for preliminary analysis, and we have obtained new 
measured data for the desired site. We show the effects on the annual DNI and GHI estimate of 
including measured and modeled data. Table 6-3 shows the results of using 8 years of modeled 
NSRDB data with 2 years of measured data (2004–2005), year 2004 of measured data only, and 
year 2005 of measured data only. 

Table 6-3. Annual Mean Values of Global and Direct Radiation 
for Measured and Modeled Data at Desert Rock, Nevada 

Measured Time Period 
(kWh/m2/day) 

2004–2005 2004 Only 2005 Only 1998–2005 

Model global 5.615 5.656 5.574 5.622 

Model direct 7.642 7.720 7.564 7.658 

Measured global 5.703 5.799 5.607  

Measured direct 7.564 7.901 7.227  

MBE global –1.54% -2.46% -0.58%  

MBE direct 1.04% -2.28% 4.67%  

Adjusted direct 8-year mean 7.579 7.833 7.300  

Meyer-corrected mean DNI 7.582 7.859 7.305  

Meyer MBE direct 0.8% -1.8% 3.6%  

Meyer-adjusted 8-year mean 7.597 7.793 7.386  
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We adjust the average DNI from the 8-year period using the bias error from our observed data 
with the simple “ratio method” described above. The bias error using both years is a relatively 
low value of 1.04%. The bias errors from individual years are higher and do not show a 
consistent pattern. The adjusted direct is the new estimate of the long-term mean DNI, and it is 
simply the 8-year mean DNI (7.658) times (1.0 - MBE). The method of Meyer et al. (2008) 
described previously can also be used advantageously here. If we assume the uncertainty is 3% 
for measured data and 10% for SUNY data, we can calculate the corrected means for all the 
months we have both measured and modeled data. If we adopt this value as our best guess for the 
actual DNI for the years 2004 and 2005, then our new bias error is (SUNY-Meyer)/Meyer, and 
our bias errors are smaller. The Meyer estimate is calculated using the following equation: 

 Iest = (Ime/Ume = Imo/Umo)/(1/Ume + 1/Umo) (6-1) 

where  

• the Meyer estimate = Iest 

• Ime = measured value 

• Imo = modeled value 

• Ume = measurement uncertainty (0.03) 

• Umo = modeled uncertainty (0.10). 

Monthly mean values of GHI and DNI are shown for the Desert Rock site (see Figure 6-10). For 
many months, especially during 2005, the bias errors are very small for GHI and large for DNI. 
GHI and DNI bias errors are well correlated in 2004, but not in 2005. One interpretation is that 
the principal source of error during 2004 is the cloud estimation, and the principal source of error 
in 2005 is in the AOD.  

A small error in global radiation along with a large overestimate of the DNI indicates that AOD 
at the site may have been much higher than the estimated AOD used in the satellite model. A 
diligent analyst might pursue an explanation for the higher than normal AOD and ask whether 
higher levels of AOD could be caused by dust storms, forest fires, or a general underestimation 
of the AOD. The average monthly values shown in Figure 6-10 would be helpful in pinpointing 
the cause of the problem. 
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Figure 6-10. Desert Rock annual average GHI and DNI from satellite and measurements. Mean bias 

error is defined as (satellite - measured)/measured by 100%. Image from NREL  

 
The monthly values in Figure 6-10 show large shortfalls in the measured DNI in January and 
April 2005, indicating higher than normal AOD. After the likely cause has been determined, the 
analyst should then assess whether that phenomenon might be more prevalent in the future or if it 
is possibly a rare event. 

The broadband AOD may be estimated from the new DNI measurements using a clear-sky 
model such as REST2 (Gueymard 2013), with supplemental data to estimate total column water 
vapor. These values can then be used to adjust the modeled DNI estimates; however, AOD is 
also highly variable from month to month and from year to year (and also on smaller timescales), 
so it would take several years of data to show conclusively that the mean AOD used in the 
satellite model needs to be adjusted at this site. 

In this example (see Table 6-3), the new estimate for the 2-year data set DNI, 7.597 kWh/m2/day, 
is less than 1% different from the 8-year model estimate of 7.658. With only 1 year of 
measurements, the errors are larger, up to 3.6%. 

6.3 Variability of the Solar Resource in the United States 
The variability of the solar resource is an important consideration in the need to adequately 
characterize the variability with measurements and for predicting future solar power plant 
performance. This analysis disregards predictable variability, such as that caused by site latitude 
and time of day, and concentrates on less predictable behavior caused by climate. The solar 
variability is closely related to the variability of climate in time and space, because atmospheric 
forces and constituents have a strong impact on the amount of solar radiation absorbed, reflected, 
or otherwise prevented from reaching the Earth’s surface. 
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With knowledge of the likelihood of variability from year to year, users are provided some 
justification for selecting a particular period of time for measurements adequate to characterize 
the solar resource. Likewise, with knowledge of variability across distance, users can make some 
statement of the applicability of a measurement to a location some distance away. Knowledge of 
variability then becomes valuable when deciding how long to make measurements at a particular 
location and whether the character of the solar resource at that location can be extended to other 
nearby locations. 

Gueymard and Wilcox (2011) have analyzed 8 years of data (1998–2005) from the NSRDB in 
the realms of temporal and spatial variability. The analysis summarized the values in each 10-km 
by 10-km cell in the SUNY satellite-derived data in the NSRDB and calculated monthly mean 
daily totals, annual mean daily totals, and mean daily total for the entire 8-year period. The 
values were analyzed by temporal and spatial variability. 

Temporal variability. For each cell, the 8 annual values were used to calculate a COV. The 8-
year mean irradiance <Ep> and each annual value Ei were used to derive the standard deviation 
of the data set. Because there are no missing values, the standard deviation simplifies to 

 σt = [ ( < Ep > –Ei )2 / 8 ]1/2 (6-2) 

The temporal COV is 

 Ct = σt / < Ep> (6-3) 
To understand the variability in a seasonal scope, the process was repeated on a monthly level—
for example, the 8 Januarys, Februarys, etc. The results, expressed in percent, represent the 
variability in the solar resource year by year at the cell’s geographic location. The resulting COV 
for DNI for all cells plotted as a contour map of the United States is shown in Figure 6-11, which 
provides a quick visual measure of differences in interannual variability. The temporal COV for 
the 48 U.S. states ranges from a low of 0.49% in south-central Washington to a high of 15.8% in 
northwest Washington (which has an interesting contrast of climate within a single state). 

 
Figure 6-11. Interannual DNI variability (COV as percent) for 1998–2005. Image from NREL 
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Spatial variability. The 8-year daily total irradiation means for each 10-km by 10-km cell were 
compared to a matrix of surrounding cells to determine the variability of the solar resource 
within the matrix (see Figure 6-12). 

 
Figure 6-12. A 3-by-3 grid layout with anchor cell in the center and 8 surrounding neighbor cells. 

Image from NREL  

 
Here, the standard deviations of the surrounding cells were calculated as 

 σs = [ Σ (Ep – Ei )2 / n ]1/2 (6-4) 

The spatial COV is 

 𝐶𝑡 = 𝜎𝑡
<𝐸𝑝>

 (6-5) 

The same process was applied to the 8-year means on a monthly level—all Januarys, Februarys, 
etc. 

Two matrix sizes were analyzed: a 3 by 3 (see Figure 6-12) and a 5 by 5. These represent areas 
of approximately 30 km by 30 km and 50 km by 50 km, respectively, and likewise roughly 
represent an area within 15 km and 25 km of a measurement site. The results for DNI, expressed 
in percent, are mapped in Figure 6-13, which provides a quick visual representation of how the 
solar resource varies throughout space. For DNI, the values range from 0.12% in central 
Missouri to approximately 11.5% along a corridor between Los Angeles and San Bernardino, 
California. Variability tends to be higher in coastal areas (particularly the California coast) and in 
mountainous areas. Greater variability occurs in the 5-by-5 matrix, which is to be expected 
because of the effects of terrain. Further, the general pattern of high and low variability remains 
the same between the two maps, indicating that in locations of significant variability, the 
magnitude is much a function of distance. 
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Figure 6-13. DNI spatial coefficient of variability for a (top) 3-by-3 cell matrix and (bottom) 5-by-5 

cell matrix for the average DNI from 1998–2005. Image from NREL  

 
The underlying data for these maps are available from NREL to provide users with the actual 
values for each 10-km by 10-km cell both in units of % COV and Wh/m2. Users should be 
cautioned that the 8-year period may not be long enough to produce definitive variability values, 
and the uncertainty of this analysis has not been defined. NREL plans to update this data set by 
drawing from a longer period of record; however, the results here are very likely accurate enough 
to reveal the relative variability of the solar resource throughout the United States. 

Using these variability statistics, users can better understand the extent of measurements required 
to best characterize the solar resource for a particular application. In areas with low interannual 
variability, a shorter measurement period may suffice. In areas with low spatial variability, a 
measurement station could possibly represent the solar resource at nearby locations, negating the 
need for additional measurements. An analyst can use this information to better build confidence 
in a data set as being sufficient for an analysis and can use these data to understand the 
consistency of future solar power plant performance and how that relates to the economic 
viability of a particular location. 
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Similar analysis was carried out for the gridded TMY data set (1998–2009) (Habte et al. 2014). 
The spatial variability analysis was implemented by comparing a center pixel to neighboring 
pixels (Figure 6-14). A COV value was generated for each configuration shown in Figure 6-15. 

 
Figure 6-14. The distribution of the pixels in each spatial variability analysis. The black center 

pixels were compared to each of the gray pixels. Images from NREL 

 

 
Figure 6-15. Map showing spatial variability among neighboring pixels. Images from NREL 

 
The higher variation in the DNI compared to the GHI was attributed to the opacity of sky and 
also aerosols (Gueymard and Wilcox 2011). The magnitude of variation (COV) in the DNI 
increased rapidly as the distance between the center pixel and the farthest pixel increased (Figure 
6-15). The variation of DNI with adjacent pixels could provide system performance analysts with 
essential information about how the system energy output will be spatially variable in certain 
locations. 
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The temporal variability was also analyzed using a standard deviation for the monthly gridded 
NSRDB (1998–2009) data. The purpose of this analysis was to understand the effectiveness of 
the TMY data in representing the long-term variations. Figure 6-16 shows the standard deviation 
distribution of the GHI and DNI data set for all pixels in the United States. The yellow box 
illustrates confidence interval coverage of 95%, and the red line is the mean point of the 95% 
confidence interval data. 

  

 

Figure 6-16. Monthly standard deviation distributions in kWh/m2/day for the NSRDB gridded DNI 
and GHI data sets. Illustrations from NREL  

 
As illustrated above, the standard deviations of the irradiance for each month provide useful 
information about the temporal variability of a typical data set. The annual temporal variations 
included in the typical data set do not depict the monthly variations; therefore, the user of the 
TMY data set must assess the importance of shorter term (monthly) compared to long-term 
(annual) temporal variability when applying the data to a specific system performance project. 

6.4 Applying Solar Resource Data to Planning Solar Energy Projects 
This section first provides a summary of general approaches of using solar resource data (as 
described in Chapters 1-5) to estimate the yield from solar energy systems. First, PV systems are 
discussed, followed by concentrating systems and flat-plate collectors. The second part of the 
chapter discusses a variety of approaches for monitoring solar resource data at an existing power 
plant to better understand the plant’s performance. 

6.4.1 Approaches to Estimating Yield of Non-Concentrating PV Projects 
The value of electricity generated by a PV plant depends on the amount of electricity generated 
and the grid’s need for that electricity at the time it is generated. A quantitative understanding of 
the solar resource for the intended location and orientation of the PV array is essential to both of 
these. This section gives a high-level overview; more detailed descriptions of PV system 
modeling can be found in Ellis et al. (2011).  
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We describe three general approaches to estimating PV system yield. These are presented in 
order of increasing accuracy. 

6.4.1.1 Performance Ratio Method 
The output of a PV plant can be characterized by the performance ratio metric, which describes 
the fraction of electricity generated by the plant relative to what the plant would generate if it 
always operated at its nameplate efficiency (International Electrotechnical Commission 1998). 
Typically, new PV plants operate with performance ratios of 0.8 ±0.1 (van Sark et al. 2012). 
Thus, if the annual solar resource available for a given site and given array orientation (fixed or 
tracking) is determined, the annual output of the system can be estimated according to Eq. 6-6: 

 Annual output (kWh/y) = 0.8 X solar resource (kWh/m2/y) X PV plant size (kW) (6-6) 

Where the PV plant size is derived from the sum of the module nameplate ratings as 
characterized under standard test conditions (1,000 W/m2). The uncertainty of this estimate must 
include the variability of the solar resource from year to year and the variability of the 
performance ratio (van Sark et al. 2012). Contributors to low performance ratios include  

• Shading losses 

• Soiling or snow-coverage losses 

• High-temperature operation 

• Undersized inverters so that the inverters “clip” the plant output part of the time 

• Older plants that have experienced degradation  

• Modules that have below nameplate performance (Today, many manufacturers bin 
modules so that the performance is equal to or greater than the nameplate value; whereas 
in past years manufacturers often placed modules in the bin with the larger nameplate 
value.) 

Contributors to high performance ratios include: 

• Operation in a cool climate 

• Modules with low temperature coefficients (Typically, CdTe and high-efficiency silicon 
modules tend to have the lowest temperature coefficients.) 

• Modules that generate power well above the nameplate rating. 

Van Sark et al. (2002) found a few older systems with performance ratios less than 50%, so 
Equation 1 must be used cautiously. The performance ratio method is particularly useful if one 
desires to compare performance of existing systems or when it is desired to quickly use solar 
resource data that is not available through performance models as presented in the next sections. 
Otherwise, using more sophisticated performance models is likely to be the better approach for 
estimating PV plant output.  

6.4.1.2 Simple PV Performance Models 
PVWatts is presented as an example for a simple performance model in the following. 
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NREL’s PVWatts calculator is a free online tool that estimates the electric energy production of 
a grid-connected roof- or ground-mounted PV system based on a few simple inputs.45 The user 
enters a street address or geographic coordinates of the system’s location, specifies the system 
size and array orientation, and provides some information about the system’s cost and electricity 
rates. PVWatts calculates estimated values for the system’s annual, monthly, and hourly energy 
production and for the monetary value of the electricity produced.  

By default, PVWatts uses the TMY2 data set for locations in the United States. Other solar 
resource data options are the TMY3 data set, the 10-km SolarAnywhere satellite-based data set, 
and a collection of TMY data for more than 300 international locations. Advanced users of 
PVWatts may change default assumptions for losses because of shading, soiling, and other 
factors, and PVWatts allows tracking systems to be modeled as well. In 2014, a major update to 
PVWatts’s algorithms was deployed to make the results more accurate and give additional 
flexibility for advanced users who may want to select different module technology types or 
customize system sizing.  

Full details about the underlying PVWatts algorithms can be found in Dobos (2014). PVWatts 
provides a very convenient and more accurate method than the performance ratio described in 
the previous section, so it is recommended any time that a quick estimate is needed. 

6.4.1.3 Detailed PV System Performance Models 
More accurate estimates of PV system performance can be obtained by setting up a detailed 
model of the PV plant that includes choosing specific modules and inverters, an array layout, 
detailed losses, and shading analysis. Examples for freely available programs that include such 
detailed performance models are SAM46 and greenius (Quaschning et al. 2001).47 Other 
commercial programs exist, such as PV*SOL and PVSYST. As an example, the software SAM 
will be presented in the following. 

SAM is a desktop software developed by NREL that enables the calculation of both detailed 
system performance and economics for a PV plant (Blair et al. 2014). 

SAM integrates several detailed models and databases of thousands of commercially available 
components that are used to accurately predict the performance of specific PV modules and 
inverters and their combinations in an array. SAM supports complex system designs that may 
have multiple subarrays and estimations of shading losses for systems arranged in regularly 
spaced rows as well because of their irregular obstructions and detailed accounting of other 
losses in the system. SAM’s PV model calculates energy production in each hour of the year 
using the user’s selection of any solar resource data file, including TMY2, TMY3, EPW, and 
SolarAnywhere satellite data. The accuracy of the estimation of annual yield from the PV plant is 
still dependent on the uncertainty and variability of the solar resource, but the more sophisticated 
component and system-level modeling can more accurately model the response of a PV plant to 
changing meteorological conditions. The accuracy of the model is often dependent on the user’s 

                                                 
45 See http://pvwatts.nrel.gov.  
46 See http://sam.nrel.gov. 
47 See http://freegreenius.dlr.de. 

http://pvwatts.nrel.gov/
http://sam.nrel.gov/
http://freegreenius.dlr.de/
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ability to estimate losses from soiling and/or snow. SAM has been compared to measured power 
plant performance data for numerous systems to validate its estimations (Freeman et al. 2013) as 
well as to other free and commercial PV modeling tools (Freeman et al. 2014). 

SAM combines its PV plant performance model with an economic analysis that handles complex 
utility tariff structures, incentives, plant installation and operating cost information, and financial 
structures to calculate a full multi-year cash flow and economic metrics, such as levelized cost of 
electricity and net present value. These outputs may facilitate decision making for people 
involved in the PV industry, such as project managers and engineers, policy analysts, technology 
developers, and energy systems researchers. 

6.4.2 CST Plant Yield Calculation 
CST plant yield models consist of an optical performance model and a model for the conversion 
of concentrated light to electricity, process heat, or chemical energy. In the case of CSP, the 
conversion from concentrated light to electricity involves a solar receiver model, the transfer of 
the heat to the turbine, and the storage and the operation of the turbine. For CPV, the module 
performance, the inverters, and, if present, also a battery system must be modeled.  

Because the solar resource data are used as inputs to the optical performance model, we focus on 
the description of these models in the following. Some of the latter-mentioned optical 
performance models also include software modules for the conversion to electricity or also costs 
(e.g., SAM, greenius, HFLCAL). 

Optical performance models can be separated into different categories: ray-tracing tools, 
analytical optical performance models, and models that determine the optical performance with 
lookup tables or parameterizations of the solar position relative to the collector. To better 
understand the use of the DNI data in power plant models, we briefly introduce different types of 
optical performance models and tools.  

6.4.2.1 Ray-Tracing Models 
The available solar radiation can be described as a multitude of solar rays transmitted from the 
sun to the concentrators and finally to the receiver. Ray-tracing tools such as STRAL 
(Belhomme et al. 2009), SolTRACE (Wendelin 2003), MIRVAL (Leary and Hankins 1979), or 
SPRAY (Buck 2010) calculate the path of the sun’s rays from the sunshape to the receiver by 
application of physical laws. Monte Carlo techniques are often implemented to allow for 
tractable calculation times. 

For the sake of illustration, one method for ray tracing that is available in SPRAY is explained in 
the following. The method selects one concentrator element after another and traces a given 
number of rays from the current element. After calculating the vector to the center of the sun, the 
appropriate sunshape is included. This is done by calculating an angular deviation of the ray 
vector from the center of the sun based on the probability density function corresponding to the 
user-defined sunshape. The specific ray under scrutiny is then related to a power calculated as 
the product of the incident DNI and the projected area of the current concentrator element 
divided by the number of rays per element. Then the path of the ray is followed until it reaches 
the receiver. This ray-tracing method can be based on actual measurements of the plant 
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geometry. Because not only the intercepted power but also its distribution on the receiver is 
determined, ray-tracing tools are also used for the detailed design of the plant components. 

6.4.2.2 Analytical Optical Performance Models 
The Bendt-Rabl model (Bendt et al. 1979; Bendt and Rabl 1981) is another type of calculation 
method that uses an analytical approach. To accelerate calculations, analytical equations are 
derived and solved to describe the ray’s path through the optical system. For example, the model 
suggested by Bendt and Rabl can be used for parabolic troughs and solar dishes. In a first step, 
an angular acceptance function is determined from the design geometry. The angular acceptance 
function is defined by the fraction of rays incident on the aperture at an angle that reaches the 
receiver. The second step of the Bendt-Rabl method is to determine an effective source that 
includes both the user-defined sunshape and the deviations from the design geometry. The 
optical errors of a CST collector are described as Gaussian-distributed independent uncertainties. 
Their combination is also a Gaussian distribution with a standard deviation, which is often called 
an optical error. The function that describes the optical errors is then combined with the sunshape 
using convolution. For line-focusing systems, such as parabolic troughs, a further integration 
step is required, because the effect of circumsolar radiation on the incident irradiance depends 
strongly on angle. 

Finally, the intercepted radiation can be determined by integrating the product of the effective 
source and the acceptance function. 

Bendt and Rabl (1981) also describe an alternative order of the calculation steps that combines 
the angular acceptance function and the optical errors to the so-called “smeared acceptance 
function,” which is then combined with the sunshape. 

Similar analytical methods are used in HELIOS (Vittitoe and Biggs 1981), DELSOL (Kistler 
1986) and HFLCAL (Schwarzbözl 2009). 

6.4.2.3 Lookup Table–Based Optical Performance Models 
The fastest way to determine the optical performance of a CST collector uses only 
parameterizations or lookup tables that describe the change of the optical performance with solar 
position. The necessary parameters can be derived from experimental data, the aforementioned 
analytical performance models, or ray-tracing tools. Only one constant sunshape is typically 
described by these simple models, which constitutes a limitation. 

Such lookup tables or parameterizations are used in SAM (Blair et al. 2014) and greenius 
(Quaschning et al. 2001; Dersch, Schwarzbözl, and Richert 2011). 

6.4.2.4 Required Meteorological Input for CST Models 
The DNI is the most important meteorological input parameter for CST models; however, further 
parameters must be provided for accurate yield analysis. High wind speed might force the plant 
operators to set the collectors to their stow position. Thermal losses are influenced by wind 
(convection) and ambient temperature. Humidity and pressure have an effect on the 
thermodynamic performance of CSP plants. A discussion of the influence of the different 
meteorological parameters can be found in Chhatbar and Meyer (2011). Recently, other 
parameters such as soiling and the extinction of radiation between the mirror and the receivers 
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have gained interest. (For extinction, see Pitman and Vant-Hull [1982], Sengupta and Wagner 
[2011], Ballestrín and Marzo [2011], and Hanrieder et al. [2012]. For soiling, see Sarver, Al-
Qaraghuli, and Kazmerski [2013] and Wolfertstetter et al. [2014]). 

Directly connected to the DNI itself is its angular distribution, the sunshape. Depending on the 
used CST model, the sunshape has to be provided by the user, too. The first two types of models 
mentioned above—ray-tracing and analytical models—need the sunshape and DNI as input 
variables. The third model type (lookup tables) requires only DNI as input; whereas assumptions 
about the sunshape are included as fixed settings in the model. A discussion about the influence 
of the selection of the sunshape data can be found in Wilbert (2014). 

6.4.3 Flat-Plate Collector Yield Calculation 
Regarding PV, the relevant solar input for flat-plate collector yield calculation is the POA 
irradiance, though other meteorological parameters also influence the system output. Ambient 
temperature, wind, and soiling have to be mentioned. Flat-plate thermal collector models usually 
include a thermal receiver model, thermal losses of the piping, parasitic losses, and a storage 
model. One example for software for the yield analysis of flat-plate collectors is greenius (see 
Section 6.4.1). Although the POA irradiance is the physically relevant irradiance, the separate 
specification of DNI and DHI can be of interest. Individual incidence angle modifiers can be 
used to determine the efficiency of the DNI and DHI conversion, respectively, for a given solar 
position. For example, in greenius, GHI can be provided as an input parameter for the model. 
GHI is then converted to DNI and DHI in the greenius software. 

6.4.4 Measurement of Solar Resource Data for Power Plant Characterization 
The performance of a solar energy system is directly linked to the current meteorological 
conditions. For flat-plate thermal collectors and PV, the production is roughly proportional to the 
POA irradiance. For CST, DNI is the most important parameter; however, other meteorological 
influences also exist, as discussed above. The following are a few of the many reasons to 
measure meteorological conditions for comparison to solar system performance:  

• Evaluate a performance guarantee (acceptance testing) 

• Assess power plant performance for improved yield predictions for the installed and future 
plants  

• Identify conditions of poor performance, including evidence of soiling, shading, hardware 
malfunction, or degradation, which might lead to warranty replacement, etc. 

6.4.5 Evaluation of a Performance Guarantee 
Different methods exist for evaluating the performance guarantee. In all cases, measurements of 
the solar resource are involved. 

For CST, acceptance tests involve DNI. For flat-plate thermal collectors and PV, the yield 
prediction is generally based on GHI. So, it is also common for a performance guarantee to use 
GHI as the basis for determining whether a plant has performed as promised; however, some 
companies have noted that the performance characterization of a PV plant can be accomplished 
with a lower uncertainty if the irradiance is measured in the POA (removing the uncertainty of 
the transposition of the GHI irradiance to the irradiance in the POA) and if irradiance sensors are 
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chosen to match the expected response of the PV modules (reducing angle-of-incidence and 
spectral effects). If a company chooses to specify the performance guarantee in terms of POA 
irradiance measurements, then the financial assumptions for the project need to consider that the 
plant efficiency characterized during the evaluation of the performance guarantee may differ 
from the efficiency that would be found from the model based on historical data for GHI. Also, 
the placement of all sensors must be confirmed to (1) be in the correct plane (which is easy to 
confirm when the sensor is in the horizontal plane, but not as easy for other orientations) and (2) 
experience the promised ground albedo nearby if the sensor is not in the horizontal plane (Kurtz 
et al. 2014). 

Further meteorological parameters have to be considered too, as discussed above for the yield 
prediction. Depending on the size of the solar system, more than one measurement point must be 
considered if the evaluation also includes partly cloudy sky conditions. Acceptance tests for CSP 
systems are discussed in Kearney (2011), Kearney (2013), and Janotte (2012). 

6.4.6 Monitoring Power Plant Performance 
During power plant operation, knowledge of the current meteorological conditions and the status 
of the plant are of high importance. Also, the future development of the meteorological 
conditions is relevant. Therefore, the solar resource measurements and forecasts are included in 
many solar energy systems. For CSP installations such measurements and forecasts are 
fundamental. Although many PV plants can operate successfully without any intervention, 
measurements and forecasts are also advantageous for PV. There can be value to washing a PV 
array, and equipment malfunctions can be detected more quickly if the PV plant output is being 
continually compared to the expected output based on the meteorological conditions. 

For CST, DNI measurements are involved along with the other parameters mentioned above. 
The closest correlation between PV plant performance and irradiance is obtained by monitoring 
the POA by using a reference cell or reference module that closely matches the PV module 
response. Although the PV community is not in agreement regarding use of this approach for 
performance guarantees, there is wide agreement that a matched reference cell in the POA is the 
best choice when the goal is to identify the need for power plant maintenance. 

6.5 Summary of Application of Solar Resource Data 
Depending on the technology of interest, DNI, GHI, and/or POA irradiance is required. 
Different data sets are used for the different phases of a solar energy project. For small PV 
installations or domestic flat-plate receivers, a more simple procedure than the following 
presentation might be sufficient. 

Before making site-specific measurements (prefeasibility, feasibility stages): 

1. Use screening maps (e.g., NSRDB ) and other criteria (grid connection , etc.) or choose 
candidate sites. 

2. Assess monthly/yearly mean irradiance values from a long-term data set (e.g., NSRDB 8-
year data set). Compare it to nearby sites that have more years of data. Create a set of 
best-guess target values for the monthly mean irradiance. 
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3. Assess the uncertainty of irradiance means in the target values. The uncertainty is higher 
if the site: 

A. Is close to strong gradients in average irradiance 

B. Is close to strong gradients in AOD (especially if DNI data are required) 

C. Is subject to possible enhanced aerosols (close to urban areas, mines, power 
plants, etc.) 

D. Has bright surface albedo, or highly variable albedo. 

4. Adjust the expected monthly mean irradiance values upward or downward, based on 
these parameters. 

5. Choose hourly data sets to match expected mean value; at the same time, have diurnal 
and seasonal patterns close to those of the candidate site. 

6. Assess the data to see how closely these mean values match the expected patterns (if 
using TMY data). 

Site-specific ground measurements must be included in the analysis for bigger solar energy 
projects. If no high-quality data are available for at least 1 year, new measurements have to be 
collected following the methods described in this handbook. 

After new ground measurements are available (according to the later stages in the project 
development—i.e., project qualification phase): 

7. Realistically assess the quality of the new measured irradiance data. 

8. Use the ratio method or Meyer method to compare measured and modeled data and create 
updated estimates of monthly mean irradiance. 

9. Use a comparison of measured and modeled irradiance to assess the variability of 
aerosols. 

10. Prepare the best possible data sets and multiple year as well as exceedance values, based 
on all available data, for final simulation runs. 

11. Evaluate the interannual variability and check to determine whether global dimming or 
brightening is an issue in the region of interest. 
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7 Forecasting Solar Radiation 
7.1 Introduction 
Solar resource forecasting becomes important in the operation phase of solar power plants (see 
Fig 6.1). Power generation from solar energy systems is highly variable. Especially in the case of 
PV systems, it cannot easily be matched to the electricity demand like power generated with 
conventional plants. In the case of CSP plants, grid effects are less problematic because of the 
thermal inertia of the heat transfer medium and other plant components together with the storage 
facilities; however, temporally and spatially varying irradiance has to be considered for the 
operation of CSP plants. Hence, the variability of the solar resource introduces new challenges to 
the operation of single solar power plants, and—with the expected integration of large shares of 
solar power—for the organization, structure, and management of all levels of electricity supply 
systems. In this context, reliable predictions of solar power production are getting more and more 
important as a basis for efficient management and operation strategies as well as for solar energy 
trading. 

Already today, solar power prediction systems are an essential part of the grid and system control 
in countries with substantial solar power generation. For example, in Germany, which had an 
installed PV power capacity of 36 GWpeak at the end of 2013, more than 40% of the total load can 
be covered by PV power on sunny summer days at noon. According to the German Renewable 
Energy Sources act, transmission system operators are in charge of marketing and balancing the 
overall fluctuating PV power feed-in, making regional forecasts for the control areas necessary. 
Additionally, there is the option of direct marketing of PV power, based on forecasts for the 
respective PV plants’ output. PV power is first offered on the day-ahead auction at the European 
Power Exchange, requiring day-ahead forecasts of PV power. Adaptations based on forecasts for 
several hours ahead can be made on the intraday market, when electricity may be traded until 45 
minutes before delivery begins. Remaining deviations between scheduled and needed power are 
adjusted using balancing power. A similar procedure for the Californian electricity market is 
described in Kleissl (2013). High accuracy of PV power forecasts on different spatial and 
temporal scales is very important for cost-efficient grid integration, because large day-ahead 
forecast errors can cause either very high or negative prices on the intraday market; whereas 
intraday forecast errors determine the need for costly balancing power. 

Several studies on the value of solar irradiance and power forecasting for solar energy 
applications and on basic requirements for these forecasts have been presented recently. Perez, 
Moore, and Stackhouse (2007) evaluate forecasts’ end-use operational accuracy, focusing on 
their ability to accurately predict the effective capacity of grid-connected PV power plants. 
Kleissl (2013) describe stakeholder needs from the perspective of independent system operators 
as well as energy traders. The requirements for a nowcasting and short-term forecasting system 
to support microgrid or island systems with respect to stability and power quality are specified in 
Rikos et al. (2008). Wittmann et al. (2008) and Kraas et al. (2013) use case studies to show the 
economic benefit of using direct solar irradiance forecasts for optimized operation strategies of 
solar thermal power plants. Hirsch et al. (2014) are dedicated to using 6-hour forecasts 
(nowcasting) to operate CST plants.  

Another application is the use of solar radiation forecasts for the energy management of a solar-
assisted district heating grid, as proposed in Steinmaurer (2008). An overview of different 
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applications of solar power forecasting is given in Dumortier et al. (2009). Also, industry 
representatives and private sector consultants are indicating an increasing need for reliable short-
term and day-ahead forecasting as more PV and CSP installations are tied to electricity grids.  

Following the new and rapidly evolving situation on the energy market with a strong need for 
accurate solar power predictions, increasing effort during the last years has been spent on 
developing irradiance and solar power prediction models. In particular, solar resource forecasting 
has been a major activity under the IEA SHC’s Task 36, “Solar Resource Knowledge 
Management,” and the follow-up Task 46, “Solar Resource Assessment and Forecasting.” These 
tasks provide an excellent opportunity to bring researchers together from around the world to 
share their approaches and experiences in developing, implementing, and evaluating solar 
resource forecasts. So far, the joint work has focused on GHI and PV applications.  

In this chapter, we give an overview of basic concepts of irradiance forecasting by referring to 
selected examples rather than by giving a review of the state of the art—which can be found in 
Inman, Pedro, and Coimbra (2013); Kleissl et al. (2013); and Lorenz and Heinemann (2012)—
and an extensive list of existing operational models as done for resource data sets in this 
handbook. The selection of the models presented here is motivated by the work completed in the 
IEA SHC’s Task 36 and Task 46. The evaluation and comparison of different irradiance 
forecasting approaches is another focus of this chapter. The text focuses on GHI; DNI is 
discussed in less detail, because fewer results have been published compared to GHI. 
Nevertheless, DNI forecasting is of great importance for the solar industry, and first results and 
products exist. Research on direct irradiance forecasting is an ongoing task, with additional 
results expected in the near future. 

7.2 Solar Irradiance Forecasting Methods  
Depending on the application and the corresponding requirements with respect to forecast 
horizon and temporal and spatial resolutions, different data and forecast models are appropriate, 
as illustrated in Figure 7-1. 

• Intra-hour forecasting with high spatial and temporal resolutions requires on-site 
observations of irradiance and/or cloud conditions. 

o Statistical time-series models with local irradiance measurements as input are 
used to provide point forecasts up to a few hours ahead with a temporal resolution 
from minutes to 1 hour. They benefit from the high autocorrelation for short time 
lags in time series of solar irradiance; however, changes in cloud conditions, such 
as by approaching clouds, can hardly be predicted.  

o Information about clouds and their motion in the surroundings of a given site can 
be obtained with ground-based sky imagers. Based on these observations, future 
cloud conditions and irradiance are extrapolated with a temporal resolution down 
to minutes or even below and a spatial resolution in the range of 10 m to 100 m. 
Forecast horizons of sky-imager forecasts are typically up to 15 minutes to 30 
minutes ahead. 

• Forecast up to several hours ahead are operationally derived by analyzing and 
extrapolating clouds and cloud motion in satellite images that have a broad coverage (see 
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also Section 4.4). The spatial resolutions are approximately 1km to 5 km for the current 
generation of geostationary satellites, and images are generated in every 15 minutes to 30 
minutes. 

• NWP models are employed for forecast horizons from several hours to several days 
ahead. Predicting dynamic changes of the atmosphere, including formation or dissolution 
of clouds as well as advection, essentially relies on physical modeling. NWP models 
describe the physical and dynamical processes in the atmosphere by numerically solving 
the governing equations of the atmosphere on a grid starting from observed initial 
conditions. Global NWPs cover the Earth with spatial resolutions ranging from 
approximately 0.125 degrees to approximately 0.5 degrees and temporal resolutions of 1 
hour to 3 hours. Local or regional models are employed for downscaling global model 
forecasts for specific regions to a finer grid of typically 3 km to10 km with hourly 
resolutions. 

The application of statistical models is beneficial for all horizons, ranging from very short-term 
forecasting with times-series models based on local measurements to forecasting for several days 
ahead by applying model output statistics to the output of NWP models for local refinement. 
Whichever model is used for forecasting, partly stochastic and systematic errors remain. These 
errors may be reduced with statistical models by learning from historic data sets of forecasted, 
measured, or satellite-derived irradiance. In particular, there is a high potential for improving 
forecast accuracy by combining different models with statistical learning approaches, which 
allow for an optimum assembling of different input data, depending on forecast horizon and 
weather situation.  

Basic features and characteristics of the different approaches to predict surface solar irradiance 
are briefly introduced below. 
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Figure 7-1. Illustration of different forecasting methods for different spatial and temporal scales: 
TS = time-series modeling; CM-SI = cloud motion forecast based on sky-imagers; CM-sat = cloud 

motion forecast based on satellite images; and NWP 

 
7.2.1 Irradiance Forecasting With Cloud Motion Vectors 
For short-term horizons, the temporal change in cloud patterns is strongly governed by horizontal 
advection, with the shape of clouds often remaining rather stable. Techniques detecting clouds 
and cloud motion in sufficient detail therefore provide valuable information for irradiance 
forecasting in the corresponding time scales. Evidently, the performance of this forecasting 
method is degraded when local cloud formation and dissipation processes, such as strong thermal 
convection, are dominant over cloud advection. 

The following basic steps comprise forecasting based on cloud motion vectors: 

• Images with cloud information (“cloud images”) are derived from satellite or ground-
based sky-imager measurements 

• Assuming stable cloud structures and optical properties for the considered temporal and 
spatial scales, cloud motion vectors (CMV) are determined by identifying matching cloud 
structures in consecutive “cloud images”  

• To predict future cloud conditions, the calculated motion vectors are applied to the latest 
available “cloud image”—i.e., cloud motion is extrapolated using the additional 
assumption of persistent cloud speeds and velocity 

• Forecasts of site-specific solar irradiance are inferred from the predicted “cloud images.” 



169 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

7.2.1.1 Forecasting Using Ground-Based Sky Imagers 
Solar irradiance forecasts in the subhourly range with very high temporal and spatial resolutions 
can be derived from ground-based sky images. In particular, they have the potential for capturing 
sudden changes in irradiance, often referred to as ramps, on a temporal scale of minutes or even 
less (see Figure 7-4). Cloud fields may be resolved in high detail, allowing partial cloud cover on 
large PV installations to be modeled and forecasted (see Figure 7-2). Maximum possible forecast 
horizons strongly depend on cloud conditions—i.e., cloud height and velocity. They are limited 
by the time the monitored cloud scene has passed the location or area of interest, typically up to 
15 minutes to 30 minutes ahead.  

Short-term irradiance forecasting based on ground-based sky imagers is a rather new research 
field; a review of the state of the art is given in Urquhart et al. (2013). Currently, there is no 
defined standard for sky-imaging hardware, camera calibration, or image processing techniques. 
Systems in use range from commercially available low-cost web-cam-based sky cameras to high-
quality prototype systems developed at research institutes. These use digital cameras with 
charge-coupled device chips and large fish-eye lenses for photography and industry 
applications—for example, the sky imaging systems specifically designed for solar energy 
purposes at the University of California at San Diego (Urquhart et al. 2014). 
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Figure 7-2. Cloud information from sky imagers: (upper left) original images; (middle left) pixel 
intensities; (middle right) red-blue ratio, corrected with a clear-sky library; (upper right) cloud 

decision map; and (bottom) shadow map with irradiance measurements. Sky image and irradiance 
measurements taken in Jülich, Germany, on April 9, 2013 at 12:59_00UTC in the framework of the 

HOPE campaign (Macke et al. 2014). Images from the University of Oldenburg 
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Cloud detection from sky-imager pictures is performed by evaluating different image properties. 
The red-to-blue ratio (RBR, Figure 7-2, middle right) is a main indicator for clouds because of 
different spectral-scattering properties of clouds (high RBR) and clear sky (low RBR) (Shields, 
Johnson, and Koehler 1993; Long and DeLuisi 1998). Pixel intensities (Figure 7-2, middle left) 
are also related to cloud cover and may be exploited as an additional feature for cloud detection. 
Binary cloud decision maps (Figure 7-2, top right) can be derived on the basis of threshold 
procedures—for example, by evaluating the RBR in relation to a clear-sky library (Chow et al. 
2011) to account for nonuniform clear-sky signal over sky hemisphere in dependence on the 
position of the sun. Cloud detection is particularly difficult in the circumsolar region because of 
saturated pixel information with high RBR values not only for cloudy but also for clear 
conditions. Gauchet et al. (2012) consider the circumsolar area and the solar disk separately with 
an image segmentation approach, distinguishing also clear skies, bright, and dark clouds. 
Ghonima et al. (2012) propose a method to differentiate between thin and thick clouds for 
various atmospheric conditions using a clear-sky library. Additional information on the cloud 
type in the monitored scene, which also gives an indication on cloud optical thickness and cloud 
height, can be obtained by a cloud classification algorithm (for example, Heinle, Macke, and 
Srivastav 2010). 

Transformation of the derived cloud maps to real-world coordinates requires information about 
cloud height, which together with the position of the sun determines the position of cloud 
shadows at the surface; therefore, it is essential for modeling and forecasting irradiance fields 
with high spatial resolutions. Note, however, that a single-point forecast for the position of the 
sky imager does not require information about cloud height but can be derived by simply 
evaluating the movement of cloudy pixels toward the pixel at the position of the sun. Different 
options to determine cloud height include ground-based observations, satellite methods, and the 
evaluation of sky-imager data. Most accurate information on cloud-base height is obtained from 
ceilometers (lidars), typically employed at airport weather stations. Cloud-top height retrieval 
from satellite images (see Chapter 4) gives spatially continuous information but shows larger 
uncertainties. Different methods to determine cloud height using information from more than one 
sky imager are shortly introduced in Urquhart et al. (2013) and Prahl et al. (2014).  

Detection of cloud motion is the next step to derive irradiance forecasts. Chow et al. (2011) 
identify cloud motion based on a normalized cross-correlation procedure—i.e., by maximizing 
the cross-correlation between shifted areas in two consecutive images. Alternatively, cloud 
movement may be analyzed by applying optical flow techniques (for example, as in Lucas and 
Kanade 1981 and Wood-Bradely, Zapata, and Pye 2012) to subsequent images (see Figure 7-3). 
The derived cloud motion vectors are then used to project the observed cloud scenes in the 
future. 

Cloud shadows maps at the surface (see Figure 7-2, bottom) are produced by projecting the 
forecasted cloud scenes with their assigned height using information about the position of the 
sun. Finally, solar irradiance is estimated from these cloud shadow maps. Without information 
about cloud optical properties and other atmospheric parameters, this is not a trivial task. Local 
irradiance or PV power measurements can be used to estimate irradiance or PV power for cloudy 
and clear skies. Urquhart et al. (2013) analyze frequency distributions of PV power normalized 
to clear-sky conditions to determine a clear and a cloudy mode and to assign them to shaded and 
unshaded cells, respectively. Gauchet et al. 2012 propose the use of a regression model in 
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combination with a clear-sky model to estimate the surface solar irradiance from segmented sky 
images with information about clear-sky, bright, and dark clouds; circumsolar area; and solar 
disk. 

High-quality irradiance measurements are essential for further algorithm development. In 
particular, the analysis of irradiance fields with high spatial resolutions requires measurements 
from a dense network of observation sites, such as the high-quality data set collected during the 
HOPE campaign (Macke and HOPE-Team, 2014] and Madhavan, Kalisch, and Macke 2014; 
Figure7-2, bottom). Measurements with more than 90 photodiode pyranometers distributed 
throughout an area of 10 km by 10 km close to Jülich in Germany where taken from April to July 
2013. 

 
Figure 7-3. Example of an optical-flow field. Sky image taken in Jülich, Germany, on April 19, 2013 
at 15:30 UTC in the framework of the HOPE campaign (Macke and HOPE-Team forthcoming 2014], 

Madhavan, Kalisch, and Macke 2014). Image from the University of Oldenburg 
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Figure 7-4. Example sky imager-based 5-minute-ahead irradiance forecasts. Location: Universtity 
of California at San Diego, November 14, 2012. Image from University of California at San Diego 

Center for Energy Research 

7.2.2 Satellite-Based Forecasts 
Forecasts of several hours ahead require observations of cloud fields in large areas. For example, 
assuming a maximum cloud velocity of 160 km/h, a region of approximately 2,000 km by 2,000 
km has to be covered to track arriving clouds 6 hours ahead. Satellite data with their broad 
coverage (see Section 4.4) are an appropriate source for these horizons. 

Cloud and irradiance information from satellite images can be derived by a variety of methods, 
as presented in Chapter 4. In principle, all of them can be applied to satellite-based irradiance 
forecasting with cloud motion vectors. There are also many approaches to derive atmospheric 
cloud motion vectors, which are commonly used in operational weather forecasting to describe 
wind fields at upper levels in the atmosphere. 

Satellite-based nowcasting schemes have been developed in recent years based on cloud motion 
vectors or sectoral cloud tracking (Hammer et al. 2003, Schroedter-Homscheidt et al. 2011). The 
satellite-based forecasting scheme from the University of Oldenburg in Germany (Lorenz, 
Heinemann, and Hammer 2004, Kühnert, Lorenz, and Heinemann 2013), described exemplarily 
here, uses images of the geostationary MSG satellites (See Chapter 4). The semiempirical 
HELIOSAT method (Hammer et al. 2003; see Chapter 4) is applied to obtain information about 
clouds and irradiance. A characteristic feature of the method is the dimensionless cloud index, 
which gives information about the cloud transmissivity. 
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Cloud motion vectors are derived by identifying corresponding cloud patterns in two consecutive 
images (see Figure 7-5). Rectangular areas, the “target areas,” are defined with a size of 
approximately 90 km by 90 km to be large enough to contain information about temporally 
stable cloud structures and small enough that cloud motion for the this area can be described by a 
single vector. Mean square pixel differences between target areas in consecutive images (n0 and 
n-1) are calculated for displacements in all directions (Figure 7-5a–c). The maximum possible 
displacement (“search area”) is determined by maximum wind speeds at typical cloud heights. 
The displacement that yields the minimum mean square pixel difference for a given target area is 
assigned as motion vector (Figure 7-5d). The derived motion vectors are applied to the cloud 
index image n0 to predict future cloud conditions. A smoothing filter is applied to the predicted 
cloud index image to eliminate randomly varying small-scale structures that are hardly 
predictable. Finally, irradiance is derived from the predicted cloud index images using the 
HELIOSAT method. 

The SolarAnywhere short-term forecasting scheme (Perez et al. 2009, Perez and Hoff 2013) for 
the United States based on GOES satellite images (see Section 4.4.1) follows a similar approach 
to detect cloud motion and is also based on a semiempirical cloud index method (see Chapter 4). 
Another method presented in Schroedter-Homscheidt et al. (2011) discriminates the tracking of 
optically thin cirrus clouds from the tracking of optically thick cumulus or stratus clouds with 
respect to increased accuracy needs in direct irradiance nowcasting for concentrating 
technologies. 

Müller and Remund (2013) propose a method that combines cloud index values retrieved from 
MSG satellites with wind fields from a NWP model. The wind fields are predicted with the WRF 
model (Skamarock et al. 2008) in hourly resolutions and applied to forward propagation of the 
observed cloud patterns. Information about the height of the monitored clouds is necessary to 
determine the corresponding NWP model level. Müller and Remund (2013) assume fixed cloud 
heights for this purpose. An advantage of the application of NWP wind fields compared to 
satellite-derived cloud motion vectors is the potential to describe changes in the direction and 
speed of cloud movement during the extrapolation process. 
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Figure 7-5. Schematic overview for detection of cloud motion in satellite images. Images 
reproduced from Kuehnert et al. 2013  

 
A method for satellite-based short-term forecasting based on a physical cloud and irradiance 
retrieval scheme (see Chapter 4) is introduced by Miller et al. (2013). They process GOES 
satellite observations with the NOAA Pathfinder Atmospheres Extended (PATMOS-x) 
(Heidinger et al. 2014) retrieval package, a stand-alone radiative transfer code, and combine 
them with wind field data from the Global Forecast System (GFS) model. Cloud properties are 
retrieved with PATMOS-x in a first step. Next, the cloud fields are advected using GFS winds at 
the vertical level matching the cloud-top height as retrieved from PATMOS-x. Finally, solar 
irradiance at the surface is calculated with radiative transfer calculations using predicted cloud 
properties and additional atmospheric parameters. 

7.2.3 Irradiance Forecasting with NWPs 
NWP models are routinely operated by weather services to forecast the state of the atmosphere 
for several days ahead. Starting from initial conditions that are derived from worldwide 
observations, the temporal development of the atmospheric conditions is modeled by solving the 
basic equations describing the physical laws governing the atmosphere. This physical modeling 
is essential for any forecast more than several hours ahead. A comprehensive overview of NWP 
modeling is given in Kalnay (2003). 

Global NWP models are applied to calculate the future state of the atmosphere for the complete 
Earth. To determine the initial state of a forecast, data assimilation tools (Jones and Fletcher 
2013) are applied to make efficient use of worldwide meteorological observations, including 
measurement data from weather stations and buoys as well as satellite observations. The 
prognostic equations, describing the dynamics and physics of the atmosphere, are solved using 
numerical methods. These involve spatial and temporal discretization, in which the grid 
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resolution is determined by the computational costs. Many physical processes occur on spatial 
scales much smaller than the grid size, including, for example, condensation, convection, 
turbulence, and scattering and absorption of radiation. The statistical effect of these unresolved 
processes on the mean flow is modeled with parameterizations of atmospheric physics. Today, 
the spatial resolution of global NWP models, run by approximately 15 weather services, is in the 
range of 16 km to 50 km; the temporal resolution of the model output is 1 hour, 3 hour, or 6 
hour, limited by storage requirements.  

Mesoscale or regional models covering only part of the Earth and taking initial and lateral 
boundary conditions from a global NWP model allow for downscaling to a finer grid. Weather 
services typically operate mesoscale models with a spatial resolution in the range of 3 km to 20 
km and provide hourly forecasts, but also higher resolutions are feasible. The higher spatial 
resolution allows for an explicit modeling of small-scale atmospheric phenomena. 

For irradiance forecasting, the parameterizations of radiation transfer and cloud properties are of 
special importance. Larson (2013) compares the respective model configurations with respect to 
GHI for four operational NWP models, including the integrated forecast system (IFS) of the 
European Center for Medium-Range Weather Forecasts and GFS run by NOAA. In particular, he 
discusses deep and shallow cumulus parameterizations, turbulent transport, stratiform 
microphysics and prognosed hydrometers, cloud fraction and overlap assumptions, the 
description of aerosols, and the shortwave radiative transfer schemes. But he also emphasizes 
that “because of the strong feedback and interactions of physical processes in the atmosphere,” 
other processes may have a significant impact on irradiance forecasting. 

Today, most NWP models offer GHI as direct model output, and some also provide forecasts of 
direct and diffuse irradiances. Although in principle direct model output can be used for solar 
energy application, in practice mostly an additional post-processing is applied to improve 
forecast accuracy (see Section 7.3.4). 

7.2.3.1 Examples of Operational NWP Models 
As part of the IEA SHC’s Task 36 and Task 46, irradiance forecasts of different NWP models 
have been investigated and evaluated. The following lists these with their spatial resolutions and 
output time intervals, exemplarily highlighting cloud fraction parameterizations and radiation 
schemes for some of the models. Additionally, references with respect to the application and 
evaluation of irradiance forecasts of these models in the context of solar energy forecasting are 
provided. A comparison of GHI forecasts based on these models for the United States, Canada, 
and Europe is given in Perez et al. (2013). It shall be emphasized that the sample of operational 
models and applications given here is not at all a complete list, but it reflects the work completed 
in the IEA SHC’s Task 36 and Task 46. 

The IFS of the European Center for Medium Range Weather Forecasting is a global model 
operated with a horizontal grid spacing of 16 km and 137 vertical levels for the high resolution 
deterministic forecasts (“Atmospheric Physics” 2014). Operational output is available with a 
temporal resolution of 3 hours up to 6 days ahead, with a higher resolution of 1 hour accessible 
in the framework of research projects. An overview on the current IFS physical 
parameterizations is given in the European Center for Medium Range Weather Forecasting. In 
particular, “the radiation code is based on the Rapid Radiation Transfer Model (Mlawer et al. 
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1997, Iacono et al. 2008). Cloud-radiation interactions are taken into account in detail by using 
the values of cloud fraction and liquid, ice and snow water contents from the cloud scheme using 
the McICA method (Monte Carlo Independent Column Approximation; Pincus, Barker, and 
Morcrette 2003) and McRad method (Morcrette et al. 2008)”. The prognostic scheme for clouds 
and large-scale precipitation is based on Tiedtke (1993). In Lorenz et al. (2009), European 
Center for Medium Range Weather Forecasting irradiance forecasts are analyzed with respect to 
different properties relevant for their application for PV power prediction. Lorenz et al. (2011) 
propose and evaluate an approach for regional PV power prediction for improved grid 
integration based on European Center for Medium Range Weather Forecasting forecasts.  

NOAA’s GFS (“Dataset I-i Atmospheric Fields—High-Resolution Forecast” 2014) is currently 
operated at a spatial resolution of 50 km with 47 levels, and output is provided at three-hourly 
intervals up to 8 days ahead. Model physics related to clouds and radiation are summarized in 
Larson (2013); here, it shall only be mentioned that cloud fraction is a diagnostic variable in the 
GFS model in contrast to the IFS model. Mathiesen and Kleissl (2011) give an evaluation of 
intraday GHI forecasts of the GFS compared to IFS forecasts from the European Center for 
Medium Range Weather Forecasting and the North American Model. 

Environment Canada’s Canadian Meteorological Centre operates the Global Environmental 
Multiscale. The model is run in different configurations, including a regional deterministic 
configuration (Mailhot et al. 2006) generating forecasts up to 48 hours ahead at a 7.5-minute 
time step and with a spatial resolution of approximately 15 km at the grid center, in Canada. 
Pelland, Gallanis, and Kallos (2011) have investigated solar irradiance and PV power forecasting 
with post-processing applied to the high-resolution global environmental multiscale forecasts.  

The mesoscale WRF (Skamarock et al. 2008) model has been developed as a series of open-
source models in a collaborative effort of several institutes led by the National Center for 
Atmospheric Research in the United States. The WRF model is non-hydrostatic with multiple 
nesting capabilities offering various parameterizations for the different physical processes. This 
allows its configuration for specific conditions for a certain application or a region of interest. 
The radiation scheme proposed in Dudhia et al. (1998) is applied primarily to solar energy 
applications. No cloud fraction parameterization is currently implemented for WRF, and the grid 
boxes are described as either fully cloudy or clear. Because clouds can be highly variable in 
space, this can be a disadvantage (Larson 2013), especially if the model is not run with a high 
spatial resolution.  

The application of the WRF, initialized with GFS, for solar irradiance forecasting—and energy 
meteorology applications in general— is a research focus at the University of Jaen in Spain. 
Ruiz-Arias et al. (2008) have investigated the relative performance of two different planetary 
boundary layer parameterizations for Mesoscale Model of 5th generation (MM5), the preceding 
model of WRF, for different sky conditions. A topographic downscaling procedure for the solar 
irradiance in mountainous regions and its application to the WRF is proposed in Ruiz-Arias et al. 
(2010). Lara-Fanego et al. (2011) have evaluated 3-day-ahead hourly and 10-minute WRF 
forecasts of GHI and DNI in Andalusia (Southern Spain). In cooperation with the National 
Center for Atmospheric Research (Ruiz-Arias et al. 2013) have performed surface clear-sky 
shortwave radiative closure intercomparisons in the WRF model and proposed a simple 



178 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

parameterization of the shortwave aerosol optical properties for surface direct and diffuse 
irradiances assessment (Ruiz-Arias, Dudhia, and Gueymard 2014).  

WRF for solar irradiance forecasting initialized with GFS is also operated at Meteotest in 
Switzerland (Remund et al. 2008), at GL-Garrad Hassan (Kleissl 2013), as part of the operational 
air quality forecasting program at the Atmospheric Sciences Research Center of the University of 
Albany (2010) and at AWS Truepower in the United States. 

The High Resolution Limited Area Model is a hydrostatic NWP model operated by several 
national meteorological services in Europe—for example, the Spanish Agencia Estatal de 
Meteorología and the Danish Meteorological Institute.48 The Danish Meteorological Institute 
runs its highest resolution High Resolution Limited Area Model model “SKA” for an area 
covering Northwestern Europe with a grid size of 0.03 degrees (3 km) and 65 vertical levels. The 
High Resolution Limited Area Model uses the clear-sky irradiance scheme of Savijärvi (1990) 
and the cloud scheme of Wyser, Rontu, and Savijärvi (1999). 

The regional weather forecasting system SKIRON (Kallos 1997) is operated for solar energy 
applications at Spain’s National Renewable Energy Center (Gaston et al. 2009). 

7.2.4  Statistical Methods and Post-Processing 

Statistical learning models are widely applied for solar irradiance and power forecasting. The 
functional dependence between input variables (predictors) and forecast values (predictands) is 
established in a training phase by learning from historic data, assuming that patterns in the 
historical data sets are repeated in the future and thus may be exploited for forecasting. Statistical 
methods include classical regression methods, such as autoregressive and autoregressive 
integrated moving average models, and artificial intelligence techniques, such as artificial neural 
networks, k nearest neighbors, or support vector regression. An overview of different statistical 
approaches used for solar irradiance forecasting is given in Coimbra and Pedro (2013) and 
Diagne et al. (2012). Here, we reference selected examples for the majority of cases investigated 
in the IEA SHC’s Task 36 and Task 46. 

Statistical models can be used to derive irradiance forecasts solely based on measurements 
without involving any physical modeling (time series models with no exogenous input). They 
also play an important role in enhancing the output of NWP models and can be applied to cloud 
motion forecasts (see Figure 7-6). Different terminology is used for this combination of 
statistical and physical forecasting methods, depending on the perspective of the researchers. The 
community of statistical modeling and artificial intelligence refers to these models as “statistical 
models with exogenous input.” Meteorologists commonly use the terms statistical post 
processing or, more specifically, model output statistics in the context of NWP, which is the 
terminology adopted here. 

Post-processing methods are applied to forecasts of physical models to 

• Reduce systematic forecast errors, 

                                                 
48 See http://www.hirlam.org/.  

http://www.hirlam.org/
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• Account for local effects (e.g., topography, surface) 

• Account for the influence of selected variables in more detail (e.g., aerosols) 

• Derive parameters that are not provided as model output (For example, today direct  
irradiance is not a standard output parameter of NWP models.) 

• Combine the output of different models. 

 

Figure 7-6. Overview of the application of statistical methods and post-processing  
 
In addition to statistical post-processing techniques, there are also nonstatistical methods for 
post-processing (see Figure 7-6). A traditional method to obtain improved local forecasts from 
NWP model output is to involve forecast experts’ human knowledge. Forecasts of direct or 
diffuse irradiance can be derived using empirical or physical models from GHI forecasts. Finally, 
the application of smoothing filters or spatial averaging reduces fluctuations of forecasts in 
variable situations, which can be beneficial if the correlation between measurements and 
forecasts is low (see section 7.3.6).  

In the following paragraphs, we give a short overview of different statistical and post-processing 
methods. 

7.2.4.1 Time-Series Models 
Intra-hour or hours-ahead solar irradiance or PV power forecasting with time-series models uses 
recent measurements of irradiance or PV power as a basic input, possibly complemented by 
measurements of other variables. Examples are the application of a coupled autoregressive and 
dynamical system model for forecasting solar radiation on an hourly time scale described in 
Huang et al. (2013), the comparison of artificial neural networks and classical time series models 
in Reikard (2009), and the short-term PV power prediction approach of Bacher, Madsen, and 
Nielsen 2009. 

For any statistical model, the selection and availability of appropriate input variables as well as 
an optimized preprocessing of these data is of critical importance for good forecast performance. 
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Also, the choice of the model configuration—for example, the artificial neural network 
architecture or the assignment of support vector regression model parameters determining the 
degree of generalization is essential. Finally, setup of the training sample—for example, the 
number of days and sites used for training—has an influence on forecast accuracies. Coimbra 
and Pedro (2013) show the benefit of the application of a genetic algorithm to identify the most 
suitable artificial neural network architecture, preprocessing scheme, and training data.  

In the following, we shortly discuss advantages and limits of purely statistical approaches. Time-
series models take the advantage of high autocorrelation for short time lags in time series of solar 
irradiance and cloud cover. Any physical forecasting model has an inherent uncertainty 
regardless of the forecast horizon, caused by limits in spatial and temporal resolutions, 
uncertainty in input parameters, and simplifying assumptions within the model. Therefore, for 
the very short-term scale of typically up to 1 hour or 2 hours ahead, forecasts based on accurate 
on-site measurements are advantageous; however, the high autocorrelation of irradiance time 
series is decreasing rapidly with increasing time lags, limiting the effectiveness of the time-series 
approach for horizons beyond several hours ahead. For these horizons, it is essential to account 
for dynamic phenomena, such as motion and formation or dissolution of clouds, which are 
influenced not only by local irradiance but by regional weather conditions, with the extension of 
the influencing area increasing with increasing forecast horizons. Physical models can describe 
these phenomena and model complex atmospheric interactions throughout large areas. Bacher, 
Madsen, and Nielsen. (2009) perform a comparison of an autoregressive model for hourly solar 
power forecasting with and without exogenous input. They found that measurement data are the 
most important input to the model up to 2 hours ahead and NWP forecast parameters are the 
adequate input for next-day horizons. 

7.2.4.2 Model Output Statistics 
Model output statistics are widely used to refine the output of NWP models, primarily to account 
for local variations in weather and surface conditions (Glahn and Lowery 1979) using 
measurements and/or climatology for specific locations as a basis to adapt the forecasts. For 
example, MOS techniques constitute a powerful tool to adapt the results from NWP or satellite-
based models to site-specific conditions (Gueymard et al. 2012). For solar irradiance forecasting, 
satellite-derived values may be used instead of ground measurements. The set of predictors 
consists of NWP output and may be extended by including any relevant information—for 
example, prior observations and climatological values.  

Traditionally, the term model output statistic is associated with the use of regression equations. A 
wider concept of model output statistics includes any statistical approach that relates NWP 
output to observed variables; some examples are given in the following. Lorenz et al. (2009) 
apply a bias correction in dependence on the solar elevation and the clear-sky index to European 
Center for Medium Range Weather Forecasting irradiance forecasts (see also Section 7.3.7). An 
approach using Kalman-filtering to improve irradiance forecasts of the Canadian Global 
Environmental Multiscale model is introduced in Pelland et al. (2011). Marquez and Coimbra 
(2011) investigate the application of artificial neural networks to predicted variables from the 
NWS forecasting database, and Gaston et al. (2009) use a machine-learning algorithm to enhance 
SKIRON solar irradiance forecasts. The statistical forecast tool BLUE FORECAST 
(Natschlaeger et al. 2008) is based on the GFS model and integrates different methods of data 
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mining such as ridge regression, automatic quadratic models, or neural networks to process the 
forecasts. 

7.2.4.3 Combinations of Different Models 
Combining the output of different models can increase the forecast accuracy considerably when 
compared to single-model forecasts. First, simple averaging is beneficial for models with similar 
accuracy, exploiting the fact that forecast errors of different models are usually not perfectly 
correlated (Perez et al. 2013).  

Combination methods using statistical tools may additionally account for strengths and 
weaknesses of the different models for certain situations—for example, by adapting the 
contribution of each model depending on the weather situation. In particular, they may also be 
applied to establish an irradiance forecasting tool covering horizons from several minutes to 
several days ahead by integrating measurements, climate monitoring, and NWP forecasts with an 
optimized weighting depending on the forecast horizon (Lorenz et al. 2012). 

7.2.4.4 Post-Processing With Empirical Models 
Empirical models allow for deriving parameters not provided as direct output of NWP models 
(direct model output) from predictions of related variables. Perez et al. (2007) propose a solar 
radiation forecast model relating sky-cover predictions from the National Digital Forecast 
Database to the to the clear-sky index of global irradiance.  

The PV power forecasting approaches presented in Lorenz et al. (2011) and Pelland et al. (2012) 
involve empirical models to derive the POA irradiance as input for PV simulation models. 
Transposition of the predicted global horizontal to POA irradiance first requires decomposition 
to its components horizontal beam and diffuse irradiance. For that purpose, a number of 
empirical diffuse or direct fraction models are available, originally developed for application to 
measurements or satellite data, such as Skartveith, Olseth, and Tuft (1998) and Perez et al. 
(1992). Next, the two components are converted to the array plane. The transposition of the 
direct irradiance is straightforward and subject to geometric considerations only. The 
transposition of the diffuse irradiance requires a model for the directional distribution of radiance 
over the sky, describing anisotropic effects such as horizon brightening and circumsolar 
irradiance (Perez et al. 1987, Gueymard 1987, Hay 1979). A validation and comparison of 
different separation models is provided in a number of publications, including Boland, Huang, 
and Ridley (2013); De Miguel et al. (2001); Dervishi and Mahdavi (2012); Gueymard (2011); 
Gueymard and Ruiz-Arias (2014); Ruiz-Arias et al. (2010); and Tapakis, Michaelides, and 
Charalambides (2015). Similar validation studies but for transposition models are provided by 
Behr (1997); David, Lauret, and Boland (2013); Gueymard (2009); Ineichen (2011); and 
Kambezidis, Psiloglou, and Gueymard (1994). Finally, the validation of combined separation 
and transposition models has been undertaken by Gueymard (2009); Orehounig, Dervishi, and 
Mahdavi (2014); and Lave et al. (2015). 

7.2.4.5 Physical Post-Processing Approaches  
Physical post-processing approaches can be used to derive parameters that are not provided as 
direct model output. In particular, they are employed for direct irradiance forecasting and for a 
better consideration of aerosols. A direct and diffuse irradiance forecasting approach for solar 
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energy applications based on chemical transport and NWP is presented in Breitkreuz et al. 
(2009). Forecasts of the AOD are inferred from particle forecasts of a chemical transport model. 
These aerosol forecasts together with other remote sensing data (ground albedo, ozone) and 
NWP parameters (water vapor, clouds) are used as input to radiation transfer calculations to 
derive the irradiance forecasts. Another physical post-processing procedure for direct irradiance 
forecasting based on WRF model output and satellite retrievals is proposed and evaluated in Lara 
Fanego et al. (2011).  

7.2.4.6 Meteorologists’ Interpretation of NWP Output 
Many forecast providers involve forecast experts’ human knowledge for deriving their forecast 
products. Traumueller and Steinmaurer (2010) describe the combination of a clear-sky model 
with cloud cover forecasts, derived from meteorologists by analyzing and comparing the output 
of different global and local NWP models. Especially in situations difficult to forecast, such as 
fog, this method offers potential for improvement. Also, the setup of the U.S. National Digital 
Forecast Database involves human input, as described in Perez et al. (2010). 

7.3 Evaluation of Irradiance Forecasts 
Forecast evaluation provides users with necessary information about forecast accuracy and helps 
them choose between different forecasting products or assess the risk when using a forecast as a 
basis for decisions. In research, detailed evaluations are an indispensable basis for model testing 
and further model development. 

Many different aspects can contribute to forecast evaluation. An extensive overview of forecast 
verification methods is given in Joliffe and Stephenson (2003). Depending on the target group 
and the aim of the accuracy assessment, different methods to assess prediction quality will be 
selected. Forecast users are often interested in the forecast “end use accuracy,” specified with a 
basic set of accuracy measures most important for the intended application; however, with the 
increasing importance of forecast information, their interest in detailed evaluation methods is 
growing.  

The quality of forecasts is evaluated by assessing their similarity to reference data with visual 
analysis and statistical error measures. Most often, irradiance measurements are used as 
reference data—commonly referred as ground truth data; nevertheless, it is subject to 
uncertainties (see Section 3.3). Also, satellite-retrieved irradiance values or the output of a 
detailed physical model may serve as a reference. 

A coherent set of basic evaluation measures and procedures as well as reference data sets were 
compiled in a collaborative effort of the IEA SHC’s Task 36 and the European MESoR project 
(Beyer et al. 2009) to allow for a transparent and comparable evaluation of different solar 
radiation forecast products. This work is continued and extended in the IEA SHC’s Task 46. 

Here, we give an outline of these evaluation methods, including statistical error measures, 
comparison to persistence as a trivial reference model (skill scores), and the analysis of 
probability density functions as well as the analysis of forecast performance in dependence on 
various parameters characterizing irradiance and cloud conditions. An example evaluation 
illustrates these concepts of accuracy assessment and the benefit of baseline post-processing 
approaches investigated within the IEA SHC’s Task 36.  
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7.3.1 Measurement and Forecast Data  
Different GHI forecasting approaches are evaluated against hourly pyranometer measurements of 
18 weather stations of the German Weather Service in Germany (Figure 7-7) for the period from 
March 2013 to February 2014.  

 
Figure 7-7. Evaluation sites in Germany 

 
These data are a subset of the forecasts and measurements currently assembled in the context of a 
benchmarking study of NWP based forecasts performed in the IEA SHC’s Task 46. 

Here, forecasts from a global and a regional NWP model are compared: 

• Irradiance forecasts of the high-resolution deterministic global IFS model, operated at the 
European Center for Medium Range Weather Forecasting 

o Grid size: 0.125° 

o Output time interval: 3 hours 

o Forecast base time used here: 0:00 UTC  

o Forecast horizons: 1 hour to 24 hours ahead. 

• Irradiance forecasts of the Danish Meteorological Institute’s highest resolution regional 
High Resolution Limited Area Model model SKA: 

o Area: Northwestern Europe, initialized with IFS data 

o Grid size: 0.03 degree (3 km)  

o Output time interval: 1 hour 

o Forecast base times: 0:00 UTC, 06:00 UTC, 12:00 UTC, 18:00 UTC 
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o Forecast horizons: 4 hours to 9 hours ahead.  

Different base-line post-processing approaches were applied to both data sets: 

• Spatial averaging 

o IFS forecasts are averaged over 1 degree by 1 degree. 

o The SKA model forecasts are derived for two averaging versions: from the 
nearest neighbor (denoted as “SKA” in the following) and averaged over 20-by-
20 grid boxes corresponding to approximately 60 km by 60 km (“SKA20x20”). 

• Temporal interpolation: Hourly irradiance values are derived from 3-hour IFS forecasts 
averaged over 1 degree by 1 degree by linear interpolation of the clear-sky index (Lorenz 
et al. 2009), denoted as “IFS” in the following 

• Temporal averaging: For “SKA20x20” forecasts, temporal averages over 5 hours of the 
clear-sky index is analyzed: 𝐺𝐺𝐺𝑝𝑝𝑝𝑝(𝑡) = 𝐺𝐺𝐺𝑐𝑐𝑝𝑐𝑝(𝑡)∑ 𝑘𝑡∗𝑖=2

𝑖=−2 (𝑡 + 𝑖) ( “SKAav”). 

• Statistical post-processing  

o Linear regression for GHI and the clear-sky index kt* 

o Bias correction in dependence on the solar elevation and kt* (Lorenz et al. 2009). 

Training is performed with a sliding window technique using measurements of the previous 30 
days of all German Weather Service sites together. The number of training data pairs is a critical 
issue, and it was found that using a network of stations for training is favorable compared to 
using data from individual stations only for the bias correction.  

7.3.2 Statistical Error Measures  
Statistical error measures are applied for quantitative forecast evaluation. Here, a number of error 
measures based on first-order statistics are presented. 

The error of a single measurement is given as:  

 εi =Ipred,i−Imeas,i , (7-1) 

where Ipred,i denotes a predicted irradiance value (GHI or DNI), and Imeas,i is the corresponding 
measured value.  

For evaluating solar and wind power predictions, it is common practice to use the RMSE as a 
main score for assessing forecast accuracy:  

 ∑
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21 e  (7-2) 

with N the number of data pairs. Only daytime values are considered for the evaluation. Relative 
errors for irradiance forecast are generally derived by normalization with respect to mean 
measured irradiance. In contrast, relative errors of PV power forecasts for utility applications are 
often given in relation to the installed power rather than to average measurements (e.g., Lorenz et 
al. 2011). 
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The RMSE can be split into different parts, related to systematic and stochastic components of 
forecast errors. The bias 

 ∑
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bias
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1 ee  (7-3) 

describes the difference between the mean values of predicted and measured values (systematic 
error). For a positive bias, the predicted values exceed the measurements in average. 

The standard deviation of the errors stderr: 
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gives information on the fluctuation of the errors around their mean value. It may be further 
decomposed into one part related to the amplitude error (σ(I pred) - σ(Imeas)) and another part 
related to the correlation coefficient r of the time series, defined as: 
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With the complete decomposition of the RMSE: 

rmse2= bias2+ (σ(Ipred) - σ(Imeas))2+2σ(Imeas)σ(Ipred)(1-r) 

The parts of the errors that can be easily corrected with a simple post-processing based on linear 
transformations can be identified. 

A linear transformation of a time series with the coefficients α and β is given by: 

 βa += predLRpred II ,  (7-6) 

To achieve a minimum root mean square erro, the mean value and the standard deviation s(Ipred) 
of the predicted time series are adjusted in a way that the bias is removed and the stderr is 
minimized (see also Beyer et al. 2009). The minimum RMSE achievable with linear 
transformations is determined by the correlation r between measurements and predictions and the 
amplitude of the measurements: 

 rIrmse measLR −= 1)(s  (7-7) 

with the amplitude of the predictions scaled to 

 s(Ipred,LR)=s(Imeas)r (7-8) 

The same variance of predicted and measured time series results in the smallest possible RMSE 
only for a perfect correlation. For correlation coefficients smaller than one, a reduction of the 
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variance of the predicted time series according to Equation 7-8 improves forecast accuracy in 
terms of RMSE.  

This is illustrated in Figure 7-8, showing a considerably higher RMSE for the nearest neighbor 
SKA forecasts than the IFS forecasts, but only a slightly smaller correlation coefficient. A clear 
reduction of the RMSE from 46% to 43% is achieved with linear regression for the SKA 
forecasts, with s(Ipred) reduced from 1.05s(Imeas) to 0.9s( Imeas). For the IFS forecasts, with the 
ratio s(Ipred,)/s(Imeas) close to the correlation coefficient r already for the original forecasts and a 
small bias, the improvement with linear regression is within the limits of the given precision. 

Another common measure to assess forecast accuracy is the mean absolute error: 

 ||1
1
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mae e  (7-9) 

recommended in Hoff et al. (2012) as a preferred measure, in particular for reporting relative 
errors. 

From a user’s point of view, ultimately the impact of forecast errors on their application will be 
decisive for the choice of the most suitable error measure. The mean absolute error is appropriate 
for applications with linear cost functions—i.e., when the costs caused by a wrong forecast are 
proportional to the forecast error. The RMSE is more sensitive to large forecast errors and hence 
suitable for applications when small errors are more tolerable and larger errors cause 
disproportionately high costs, which is the case for many applications in the energy market and 
for grid management issues.  
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Figure 7-8. Scatterplots of predicted and measured GHI for (top) high-resolution SKA and (bottom) 

IFS forecasts. The original forecasts are shown in red, the forecast processed with the linear 
regression of GHI is shown in blue, and the regression equation is visualized in green. The data 

are from Dresden, Germany, March 1, 2013–February 28, 2014. 

 
7.3.3 Evaluation in Dependence of Solar Elevation and Analysis of the Clear-Sky 

Index 
A special feature of irradiance forecasts is their strong deterministic component because of the 
daily and seasonal course of the sun. Figure 7-9 shows the characteristic course of the RMSE 
throughout the day time for the SKAav and IFS forecasts. The solar elevation determines 
maximum possible irradiances and therefore also influences the magnitudes of forecast errors.  

To investigate the non-deterministic part of the forecast errors, primarily caused by cloud 
forecast errors, the clear-sky index is analyzed.  

 Kt* = GHI/GHIclearsky (7-10) 
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Here, the clear-sky model of Dumortier (Fontoynont 1998, Dumortier 1998) with the 
METEONORM high-resolution database (Remund 2009) for the turbidity input is used to derive 
GHIclearsky. As shown in Section 4.4, clear-sky irradiance can be estimated with good accuracy. 
Still, it should be kept in mind that the clear-sky index does not depend only on the analyzed 
forecasts, but that there is some influence of the used clear-sky model and atmospheric input 
parameters.  

 
Figure 7-9. (Solid lines with dots) RMSE and (dashed lines) bias of (red) SKAav and (blue) IFS GHI 
forecasts through the time of the day. The data are from 18 German Meteorological Service sites, 
March 1, 2013–February 28, 2014. 

 
Figure 7-10. (Solid lines with dots) RMSE and (dashed lines) bias of (red) SKAav and (blue) IFS kt* 
forecasts through the (right) time of the day and (left) cosine of the SZA cosΘZ. The data are from 

18 German Meteorological Service sites, March 1, 2013–February 28, 2014. 

 
Figure 7-10 shows that the RMSE of the clear-sky index kt* is increasing for morning and 
evening hours with low solar elevations, as also the magnitude of the bias. For low solar 
elevations, there is a high sensitivity to three-dimensional effects for broken clouds situations as 
well as high sensitivity to errors in the atmospheric turbidity (AOD; WV) for clear-sky 
modeling, both of which contribute to larger RMSE values; however, when considering overall 
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error measures for GHI, the effect of the low accuracy of kt* for low solar elevations is mitigated 
by multiplication with small clear-sky irradiances. 

Care has to be taken when applying statistical models to the clear-sky index kt* instead of GHI, 
which is potentially beneficial because the deterministic trend is reduced. A statistical adjustment 
for kt* will give equal weight to errors in kt* for all solar elevations. Therefore, it may adapt too 
much to the larger systematic errors of kt* for low solar elevations and not fully tap the potential 
for adjustments for higher solar elevations, which have a larger influence on irradiance forecast 
errors. A model to explicitly consider the dependence of the bias on the solar elevation is 
introduced in Section 7.3.7.  

 

 
Figure 7-11. Scatterplot of predicted over measured kt* for (top) high-resolution SKA and (bottom) 

IFS forecasts. The original forecasts are shown in red, the forecast processed with the linear 
regression of kt* is shown in blue, and the regression equation is visualized in green. The data are 
from Dresden, Germany, March 1, 2013–February 28, 2014; cos(ΘZ) > 0.1 for kt*evaluation, cos(ΘZ) 

> 0.0 for GHI RMSE and bias. 
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Scatterplots and the effect of linear regression for the clear-sky index kt* of the SKA and IFS 
example forecasts are shown in Figure 7-11. Here, the analysis is limited to cos(ΘZ)>0.1 to avoid 
overadaptation to large errors in low solar elevations. Correlation coefficients for kt* with rkt* ~ 
0.75 are much smaller than for GHI with rGHI~0.9, because the deterministic trend caused by 
solar elevation is mostly removed and the amplitude of the predictions with linear regression of 
kt* are adapted accordingly (Equation 7-8). Compared to the linear regression performed for 
GHI (Figure 7-8), a further reduction of the RMSE can be achieved for the SKA forecasts; 
whereas the impact for the IFS forecasts is still small. 

7.3.4 Persistence and Skill 
The comparison to a trivial reference model is a frequently applied check to assess the quality of 
a forecast. The most common reference model for short-term forecasts is persistence assuming 
that the current situation does not change and taking actual or recently measured values as 
forecast values.  

For solar irradiance forecasting, the deterministic component of solar irradiance caused by the 
path of the sun should be considered as an additional constraint. For day-ahead forecasting, a 
simple approach reproducing the daily course of irradiance is persistence of the measured value 
of the previous day at the same time as a forecast value, which does not require any model for 
the daily irradiance pattern: 

 GHIper,24h(t) = GHImeas(t − 24h) (7-11) 

A more flexible option is using persistence of the clear-sky index kt*meas in combination with a 
clear-sky model instead of persistence of irradiance values. For forecast horizons of several 
hours (∆t) ahead, persistence GHIper,∆t for the time t is then defined as: 

 GHIper kt∗,∆t(t) = GHIclear(t) kmeas∗ (t − ∆t) (7-12) 

Considering average values of the clear-sky index throughout a certain period instead of single 
value can additionally reduce the RMSE (for the effect of temporal averaging, see also Section 
7.3.6). For day-ahead forecasting, persistence of the average clear-sky index of the previous day 
is a suitable reference model that yields considerably smaller errors than the simple approach 
GHIper,24h described above (see Beyer et al. (2009). 

Another common reference model is based on climatological mean values. An investigation for 
German weather stations (Beyer et al. 2009) showed a superior performance when using 
climatological mean values of kt* compared to persistence of the average daily clear-sky index 
from 2 days onward. This may be different for other climates; in any case, it is worthwhile to 
investigate the use of climatological mean values as a second reference model in addition to 
persistence. 

The performance of the investigated forecast model compared to a reference model is evaluated 
with skill scores. They are defined as the difference of the scores for the model forecast and the 
reference forecast divided by the difference between the respective scores for a perfect forecast 
and the reference. For example, the RMSE skill score ssRMSE is given as 
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  ssRMSE = RMSEref −RMSEmodel
RMSEref

 (7-13) 

where RMSEref refers to the reference model and RMSEmodel to the investigated forecasting 
algorithm. Its value thus ranges between 1 (perfect forecast) and 0 (reference forecast). A 
negative value indicates performance worse than the reference. Skill scores may be applied only 
for comparisons to a simple reference model and also for intercomparisons to different 
forecasting approaches (improvement scores [is]).  

7.3.5 Probability Density Function of the Clear-Sky Index 
Analyzing the ability of a forecast model to resemble observed probability density functions or 
frequency distributions of irradiance and clear-sky index can give useful information for model 
understanding.  

Figure 7-12 shows the probability density function of the clear-sky index derived from 
measurements compared to the corresponding pdfs of SKA and IFS forecasts. The probability 
density function of the observations shows a clear peak for kt*=1, corresponding to clear-sky 
situations. This indicates that there is no systematic bias in the clear-sky model applied to derive 
kt*. The high-resolution SKA forecasts show too many very clear (kt*>1) situations and those 
with very low clear-sky index because of too much cloud water in thick clouds; whereas 
intermediate cloud conditions are underrepresented. The opposite behavior is found for IFS 
forecasts. The 3-hour output time interval and averaging throughout 1 degree by 1 degree 
contribute to the larger share of intermediate kt* values. The clear-sky “peak” near the kt* values 
of 0.9–0.95 for the IFS forecasts indicates an underestimation of the irradiance for clear-sky 
conditions.  

Although it gives insight to model performance, similarity of the distribution functions of 
measurements and forecasts is not a sufficient forecast, because it does not include any 
information about the correct timing of the modeled events, which is essential for forecasting. 
For example, persistence will result in a probability density function very similar to the observed 
probability density function (see also Perez et al. 2013), but with higher RMSE values than the 
investigated SKA and IFS forecasts. These yield reasonable accuracies despite the considerable 
deviations of the probability density function of the clear-sky index compared to the observed 
probability density function.  

A quantitative evaluation of the agreement between the observed and forecasted distribution 
functions can be done using the Kolmogorov-Smirnoff integral (Espinar et al. 2008). It is usually 
applied to distribution functions of GHI rather than to kt* (Beyer et al. 2009, Perez et al. 2013). 
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Figure 7-12. Probability density function of the clear-sky index derived from (gray) measurements, 

(red) high-resolution SKA forecasts, and (blue) IFS forecasts. The data are from 18 German 
Meteorological Service sites, March 1, 2013–February 28, 2014; cos(ΘZ) > 0.1. 

 
7.3.6 Evaluation in Dependence on Cloud Variability and Spatial and Temporal 

Averaging 
Cloud variability has a strong impact on forecast accuracy. An evaluation of the SKA forecasts 
in dependence on the variability of the clear-sky index of the measurements, here represented by 
the standard deviation of kt*meas throughout 5 hours, shows increasing RMSE values with 
increasing variability (Figure 7-14). This is also illustrated in Figure 7-13. The forecasts show a 
good agreement with measurements for the clear-sky day (Figure 7-13, left) with basically 
constant clear-sky index and considerable deviations from the measurements for the day with 
variable clouds (Figure 7-13, right). 

The impact of linear regression in dependence on cloud variability is analyzed in Figure 7-14, 
left. The reduction of fluctuations with linear regression is beneficial in variable situations with 
low correlation, but it has a negative impact in situations with low variability. In particular, for 
clear-sky situations, the reduction of clear-sky index to values below 1 by linear regression 
(Figures 7-8 and 7-11) leads to an underestimation of the irradiances.  
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Figure 7-13. Example days comparing measurements to SKA forecasts with different spatial and 
temporal averaging—(red) SKA: nearest grid point with hourly resolution; (light blue) SKAav: 5-
hour moving average of clear-sky index of the average throughout 20-by-20 grid points. (Left) 

Clear-sky; data from Lindenberg, Germany, June 19, 2013; and (right) variable cloud conditions; 
data from Lindenberg, Germany, March 23, 2013. 

The application of smoothing filters or spatial and temporal averaging is a possibility to reduce 
fluctuations in variable situations and to preserve the quality of the original forecasts in 
homogeneous clear-sky and overcast situations. An additional advantage of this approach is that 
no additional measurement data are required for the adaptation. Figure 7-13, right, and Figure 7-
14, right, show clearly smaller RMSE values of the averaged forecasts compared to the original 
forecast for variable situations and even a small improvement for low-variability situations. The 
optimum region size and time interval for averaging depends on the correlation between forecast 
to measurements. They have not been systematically optimized for the example shown here to 
illustrate the principle benefit of spatial as well as temporal averaging. Combining the first 
averaging and second linear regression can further reduce forecast errors (see Figure 7-14, right). 
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Figure 7-14. RMSE in dependence of the standard deviation of kt*meas (throughout 5 hours) for 
(left) SKA forecasts with the application of linear regression ([red] SKA: nearest grid point, 
[orange] LR: linear regression for GHI, and [yellow] LR-kt* for linear regression for kt*) and (right) 
with different spatial and temporal averaging ([red] SKA: nearest grid point, [dark blue] SKA20x20 
averaged throughout 20-by-20 grid points, [light blue] SKAav 5-hour gliding mean of clear-sky 
index of the average throughout 20-by-20 grid points, and [green] SKAav, LR.kt*: linear regression of 
kt* applied to SKAAV). The data is from 18 German Meteorological Service sites, April 3, 2013–
February 28, 2014; training set: last 30 days, all sites. 
 
However, Figure 7-13, right, also shows that potentially useful information on cloud variability 
is lost when looking at average values. The SKA forecasts give a reasonable representation of the 
hour-to-hour variability, which is not the case anymore for the average forecasts. Mathiesen et al. 
(2013) suggest providing forecasts of cloud variability as an additional parameter, 
complementing spatially and/or temporally averaged irradiance values yielding better RMSE 
scores.  

Spatial averaging has the greatest impact in NWP models with high temporal and spatial 
resolutions. A detailed evaluation of irradiance forecasts from the Canadian GEM model resulted 
in a reduction of forecast errors by 10% to 15% when averaged throughout several hundred 
kilometers (Pelland et al. 2011). A similar improvement is achieved for WRF forecasts provided 
by Meteotest as average values of 10-by-10 model pixels, corresponding to an area of 50 km by 
50 km (Mueller and Remund 2012). Mathiesen and Kleissl (2011) report 100 km by100 km as a 
suitable averaging area for irradiance forecasts of the GFS model and the NAM model, which is 
also WRF based. The benefit of horizon-dependent smoothing filters for CMV forecasts is 
shown in Lorenz et al. (2004) and Kuehnert et al. (2013). 

7.3.7 Evaluation and Bias Correction in Dependence on Sun Elevation and Clear-
Sky Index  

Systematic deviations of NWP output variables often depend on the meteorological situation as 
well as on the solar elevation (see also Section 7.3.3). An analysis of the forecast bias of the two 
investigated models in dependence on the predicted clear-sky index (k*pred) and the cosine of the 
SZA (cosθZ) is given in Figure 7-15. The (left) IFS forecasts show a clearly nonlinear 
dependence of the bias of the predicted cloud conditions with a considerable overestimation of 
the irradiance for intermediate cloud situations (0.3 < kt*pred < 0.8). (Figure 7-11, bottom, shows a 
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similar result.) The averaged SKAav forecasts overestimate for situations predicted as clear-sky 
and underestimate in situations predicted as overcast. This is similar to the behavior found for the 
original SKA forecasts in the scatterplot shown in Figure 7-11 (top). Also the dependence of the 
bias on the solar elevation is clearly shown in Figure 7-15. The magnitude and the patters of the 
bias over the clear-sky index are changing with cos(ΘZ). 

 

Figure 7-15. (Left) Bias of IFS and (right) averaged SKAav forecasts in dependence of the cosine of 
the SZA and the predicted clear-sky index kt*. The data are from 18 German Meteorological 

Service sites, March 3, 2013–February 28, 2014. 
 
The given analysis can be used as a basis for a weather-dependent bias correction (Lorenz et al. 
2009). To avoid the systematic deviations in dependence on the forecasted cloud conditions, first 
the bias is modeled as a 4th degree polynomial function of the predicted clear-sky index kt* and 
the cosine of the SZA (θZ). The corrected forecasts are then obtained by subtracting the modeled 
bias (kt*, θZ) from the original predicted values. Training of the fit functions is performed with a 
sliding window technique using measurements of the previous 30 days of weather stations in the 
region of interest. 

This approach has been adapted and evaluated also for other NWP models and different climates. 
Mathiesen and Kleissl (2011) found improved accuracies when applying it to three different 
NWP models—GFS, North American Model, and IFS—for stations in the continental United 
States, as did Pelland et al. (2011) for their application to the Canadian GEM model, and Mueller 
and Remund (2011) for WRF forecasts for Switzerland. 

Figure 7-16 shows the RMSE of the two forecast models in dependence on the two parameters 
kt*pred and cos θz. For the IFS model, forecast errors are comparatively small for situations 
predicted as clear sky (kt*pred ≈ 1) or overcast (kt*pred< 0.2). The largest deviations among 
measurements and forecasts are found for situations with variable cloud cover, corresponding to 
intermediate values of the clear-sky index of the IFS forecasts. These patterns are similar for the 
averaged SKAav forecasts, but because of the higher variability in the forecasts, high RMSE 
values are found for a wider range of clear-sky index values. The knowledge of the situation-
specific RMSE based on predicted conditions can provide a basis for the estimation of weather-
specific uncertainty information (see Lorenz et al. 2009).  
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Figure 7-16. (Left) RMSE of IFS and (right) averaged SKA forecasts in dependence of the cosine of 

the SZA and the predicted clear-sky index kt*. The data are from 18 German Meteorological 
Service sites, March 3, 2013–February 28, 2014. 

 
7.3.8 Comparison of Different Post-Processing Approaches to Site-Specific and 

Regional Forecasting 
The impact of the different post-processing approaches presented in the previous sections is 
compared to site-specific and regional forecasts here. Regional forecasts, important for utility 
applications, are calculated as the average of the considered 18 German Meteorological Service 
sites. 

The results of this evaluation, summarized in Figure 7-17, are shortly discussed in the following: 

• RMSE values of the regional forecasts are approximately half the errors of single-site 
forecasts for the data set investigated here. Because of spatial averaging effects, the 
course of average irradiance forecasts and measurements is smoother than in single sites, 
which shows in particular a high variability for partly cloudy conditions (Figure 7-13, 
right). The deviations among forecasts and measurements are smaller for the regional 
average values, because forecast errors partly compensate each other. The reduction of 
errors when considering a set of stations instead of a single station is determined by the 
cross-correlation of forecast errors between the sites, depending on their distance from 
each other (Lorenz et al. 2009), as well as on the forecast model. An analysis of regional 
forecast errors with a larger number of sites for different region sizes and different 
forecast models is given in Lorenz et al. (2009), Kuehnert et al. (2013), and Lorenz et al. 
(2012). 

• For single-site forecasts, there is a considerable improvement of 16.4% 
(isRMSE=(RMSEav-RMSEhighres)/RMSEhighres); see also Equation 7-13) with spatial and 
temporal averaging for the hourly, high-resolution SKA forecasts, as outlined in more 
detail before. As expected, averaging has less impact on forecast performance when 
considering regional forecasts (improvement: 5.4%). 

• Statistical post-processing with measurements applied to the average SKA forecasts 
further reduces RMSE values. Linear regression based on kt* performs better than linear 
regression directly applied to GHI, with a more pronounced difference for regional 
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forecasts. Best results are achieved with the bias correction in dependence of the solar 
elevation and clear-sky index, although the improvement over linear regression with kt* 
is only small (1.8% for regional forecasts). Overall, with this approach the improvement 
compared to the average SKA forecasts amounts to 9.5% for single sites and of 21.4% for 
regional averages. For regional forecasts, there is a much larger impact of systematic 
deviations than for single-site forecasts with larger RMSE values.  

 

Figure 7-17. RMSE of IFS and SKA GHI forecasts with different post-processing approaches for 
(left) single site forecasts and (right) regional forecasts, derived as mean value of all sites. The 
data are from 18 German Meteorological Service sites, April 3, 2013–February 28, 2014; training 

set: last 30 days, all sites. 
 

• The comparison of irradiance forecasts of the high-resolution regional SKA model to the 
IFS forecasts based on 3-hour output and averaged throughout 100 km by 100 km reveals 
smaller RMSE values of the IFS forecasts as long as no statistical post-processing is 
involved and when compared to the averaged SKAav forecasts. When applying the bias 
correction in dependence of the solar elevation and clear-sky index, SKABC forecasts 
show smaller RMSE values than the IFSBC forecast with the same post processing. For 
IFS forecasts, the impact on the investigated post-processing schemes is only small, with 
an improvement of 7.8 % for regional forecasts using the bias correction. 
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8 Future Work 
Advancing renewable energy technologies will require improvements to our understanding of 
solar radiation resources. This chapter briefly describes the areas of research and development 
identified by NREL as emerging technology needs. 

8.1 Forecasting Solar Radiation 
Solar power forecasting will be an essential component of the future energy supply system using 
large amounts of fluctuating solar power. Already today, power forecasting systems contribute to 
the successful grid integration of considerable amounts of solar power. As a consequence of the 
need for precise and detailed forecast data in the energy sector, increasing research is underway 
on the forecasting of solar irradiance and solar electricity generation. 

Current research in irradiance and solar power forecasting covers all the different approaches 
presented. Improvements in NWP-based irradiance forecasting may be expected as these models 
continue to develop with respect to resolution, data assimilation, and parameterizations of clouds 
and radiation. In particular, the development and application of rapid-update-cycle models has a 
high potential to improve intraday forecasting. Forecasting techniques based on cloud motion 
will benefit from enhancements in cloud detection approaches for both satellite-based and sky-
imager-based methods. With respect to statistical methods, apart from model development, the 
availability of high-quality and up-to-date measurement data of solar irradiance and solar power 
will be of critical importance. Finally, an optimized combination of different physical and 
statistical models will be of advantage for any solar power prediction system. 

Specification of the expected uncertainty of solar irradiance or power predictions for different 
weather situations gives valuable additional information to forecast users and is more and more 
requested by them. Forecast uncertainty can be quantified with confidence intervals or in the 
form of fully probabilistic forecasts. Probabilistic forecasting may be based on the use of NWP 
ensemble prediction systems as well as on the statistical analysis of the distributions of historic 
predictions and measurements. As in deterministic forecasting, ultimately the combination of 
physical and statistical methods will lead to the best results. Nevertheless, a similar activity for 
direct irradiance forecast verification is still missing.  

Finally, a proper accuracy assessment is essential for further model development as well as for 
users that rely on forecasts as a basis for decision making. The work performed in the IEA 
SHC’s Task 36 to establish a transparent framework for forecast evaluation is currently 
continued and extended in the IEA SHC Task 46. This includes the investigation of new 
evaluation measures and concepts—for example, to assess variability information about different 
spatial and temporal scales as well as NWP and CMV model intercomparison studies for 
different climatic regions. 

8.2 High-Resolution Temporal Data 
Electrical generation by solar thermal electric power systems is directly proportional to the 
available DNI. Historical solar resource data are typically available for hourly time intervals. 
More subhourly time-series data (15 minutes or less) with dense spatial coverage (e.g., 5 km or 
less) are needed to address load-following simulations and related economic considerations. A 
first such database is now available as MACC-RAD and is described in Chapter 4 and Chapter 5. 
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Currently available instrumentation and measurement equipment can acquire solar irradiance 
data in intervals as often as 1 second (Wilcox and Myers 2008). Research is underway to deploy 
solar resource measurement stations that will provide high-resolution data at single locations and 
within the collector fields. 

8.3 Site-Specific Resource Data 
Characterizing the spatial variability of solar irradiance throughout distances of 1 km or less is 
important for improving the siting, design, and performance monitoring of a solar energy 
conversion system. The 1991–2010 NSRDB update, along with the 1961–1990 update, provides 
historical solar irradiance data for specific locations from 1961 through 2010, with a resulting 
spatial scale of approximately 100 km. Additionally, the satellite derived and physics-based 
NSRDB 2014 update provides subhourly solar irradiance data for 4-km grid cells from 2005 
through 2012. Methods for increasing the spatial resolution of satellite-based models for 
estimating solar irradiance at the surface are under development.  

Because the maintenance of meteorological ground stations is often a fundamental problem for 
collecting high-quality data, instruments that require less maintenance than those described in 
ISO 9060 are of interest. Such sensors must be standardized to increase their applicability to 
solar resource assessments.  

Data from large solar energy plants and from the corresponding resource assessment that may 
have high-quality radiometric instrumentation need to be systematically investigated. 

8.4 Additional Measurands 
Although DNI, GHI, or POA are the most important meteorological input parameters for the 
prediction of the solar power plant yield, several additional parameters must also be provided for 
accurate yield analysis. This involves familiar parameters such as wind speed, ambient 
temperature, humidity, and pressure as well as solar energy-specific measurands. Examples of 
such parameters are soiling, the sunshape/circumsolar radiation, and the extinction of radiation 
between the mirror and the receivers. Often, no site-specific information on these properties is 
available, which results in remarkable impacts on the accuracy of the yield prediction. Hence, 
these parameters have to be studied in more detail in the future. 

8.5 Effects of Climate Change on Solar Resource Assessments 
It is not yet clear what impact changes in atmospheric aerosol loading from natural causes or 
industrial pollution, changing patterns of precipitation and cloudiness, temperature extremes, and 
other climatic variables will have on the more recent solar resource data when estimating the 
performance of a CSP plant throughout the system design life (e.g., 25 years). Research is 
needed to advance climate modeling capabilities and merge the output with advanced system 
performance models. 

8.6 Need for Cross-Disciplinary Analysis Projects 
The use of solar resource and meteorological data to address complex problems such as time-
dependent utility load estimations, cloud transient effects on grid stability, and solar generation 
dispatching requires close collaboration among analysts, utility planners, and the resource and 
meteorology communities. Shared knowledge will advance the identification of resource data 
needs and the development of methods for improved resource data and information to meet those 
needs. 
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Appendix A: Radiometer Manufacturers and 
Distributors 
This list is provided for information only.  

Analytical Spectral Devices, Inc. 
5335 Sterling Drive, Suite A 
Boulder, CO 80301 USA 
Telephone: 303-444-6522 
Fax: 303-444-6852 
http://www.asdi.com/  
Spectral irradiance measurements 
 
Black Photon Instruments GmbH 
Emmy-Noether-Str. 2, 79110 
Freiburg, Germany 
Telephone: + 49-761-47914-65 
http://www.black-photon.de/ 
Automatic solar trackers, spectral 

irradiance measurements, 
circumsolar radiation measurement, 
data logger systems 

 
Brusag 
Chapfwiesenstrasse 14 
CH-8712 Stäfa 
Switzerland 
Telephone: +41-1-926-74-74 
Fax: +41-1-926-73-34 
http://www.brusag.ch/  
Automatic solar trackers 
 
Campbell Scientific, Inc. 
815 West 1800 North 
Logan, UT 84321 USA 
Telephone: 435-753.2342 (Info.) 
Telephone: 435-750.9681 (Orders) 
Fax: 435-750.9540 
E-mail: info@campbellsci.com  
http://www.campbellsci.com/  
Data logger systems, weather stations 
 
Casella London Limited 
Regent House 
Britannia Walk 
London N1 7ND 

Telephone: 01-253-8581 
Telex: 26-16-41 
Radiometers 
 
CSP-Services GmbH 
Friedrich-Ebert-Ufer 30  
51143 Cologne, Germany 
Telephone: +49-2203-959003-0 
http://www.cspservices.de/  
Rotating shadowband irradiometer 
 
Davis Instruments Corporation 
3465 Diablo Avenue 
Hayward, CA 94545 USA 
Telephone: 510-732-9229 
Fax: 510-670-0589 
http://www.davisnet.com/  
Weather stations 
 
DAYSTAR 
3250 Majestic Ridge 
Las Cruces, NM 88011 USA 
Telephone: 505-522-4943 
www.raydec.com/daystar 
Radiometers 
 
Delta-T Devices, Ltd. 
130 Low Road, Burwell 
Cambridge, CB25 0EJ 
UK 
U.S. Distributor: 
Gary L. Woods, Sales Manager 
garywood s@dynamax.com 
http://www.dynamax.com/ 
Telephone: 800-896-7108 (Toll free) 
Telephone: 281-564-5100 
Fax: 281-564-5200 
Radiometers, weather stations, data 

loggers 
 

http://www.asdi.com/
http://www.black-photon.de/
http://www.brusag.ch/
mailto:info@campbellsci.com
http://www.campbellsci.com/
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mailto:s@dynamax.com
http://www.dynamax.com/
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EKO Instruments Trading Co., 
Ltd. 
21-8 
Hatagaya 1-chome 
Shibuyaku, Tokyo 151 
Japan 
Telephone: 81-3-3469-4511 
Fax: 81-3-3469-4593 
Telex: J25364 EKOTRA 
www.eko.co.jp/ l 
U.S. Distributor: 
SC-International, Inc. 
346 W. Pine Valley Drive 
Phoenix, AZ 85023 USA 
Telephone: 602-993-7877 
Fax: 602-789-6616 
Radiometers, trackers, data loggers 
 
The Eppley Laboratory, Inc. 
12 Sheffield Avenue 
Newport, RI 02840 USA 
Telephone: 401-847-1020 
Fax: 401-847-1031 
http://www.eppleylab.com/ 
Radiometers, trackers, data loggers 
 
Hukseflux Thermal Sensors B.V. 
Elektronicaweg 25 
2628 XG Delft 
The Netherlands 
Telephone: +31-15-2142669 
Fax: +31-152574949 
http://www.hukseflux.com/   
Radiometers 
Hukseflux U.S. Sales Representative 
Robert Dolce 
HuksefluxUSA 
P.O. Box 850 
Manorville, NY 11949 USA 
Telephone: 631-251-6963 
E-mail: rdolce@HuksefluxUSA.com 
 
Irradiance, Inc. 
41 Laurel Drive 
Lincoln, MA 01773 USA 
Phone/Fax: 781-259-1134 

http://www.irradiance.com/  
Rotating shadowband radiometer  
 
Kipp & Zonen, Delft BV 
Delftechpark 36 
2628 XH Delft 
The Netherlands 
Telephone: 31-15-2755-210 
info@kippzonen.com 
http://www.kippzonen.com/  
U.S. Sales Representative 
Victor Cassella 
Kipp & Zonen 
125 Wilbur Place 
Bohemia, NY 11716 USA 
Telephone: 631-589-2065 ext. 22 
Fax: 631-589-2068 
Email: vc@kippzonen.com 
Radiometers, trackers, data loggers, 
weather stations 
 
LI-COR, Inc. 
4421 Superior Street 
Lincoln, NE 68504 USA 
Telephone: 800-447-3576 (Toll free) 
Telephone: 402-467-3576 
Fax: 402-467-2819 
http://licor.com/  
Radiometers, data loggers, weather 

stations 
 
Matrix, Inc. 
537 S. 31st Street 
Mesa, AZ 85204 USA 
Telephone: 480-832-1380 
Radiometers 
 
Medtherm Corporation 
P.O. Box 412 
Huntsville, AL 35804 USA 
Telephone: 256-837-2000 
Fax: 256-837-2001 
http://medtherm.com/  
Cavity radiometers 
 
  

http://www.eko.co.jp/eko/english/03/a.html
http://www.eppleylab.com/
http://www.hukseflux.com/
mailto:rdolce@HuksefluxUSA.com
http://www.irradiance.com/
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MicroStrain, Inc. 
459 Hurricane Lane, Suite 102 
Williston, VT 05495 
Telephone: 800-449-3878 
http://www.microstrain.com/ 
Wireless sensors, data loggers 
 
Middleton Solar 
Factory 20, 155 Hyde Street 
Yarraville, Victoria 3013 Australia 
Telephone: +61-3-9396-1890 
Fax: +61-3-9689-2384 
http://www.middletonsolar.com/  
Radiometers 
 
Ocean Optics, Inc. 
830 Douglas Ave. 
Dunedin, FL 34698 USA 
Telephone: 727-733-2447 
Fax: 727-733-3962 
http://www.oceanoptics.com/  
European Sales Office: Geograaf 24 
6921 EW DUIVEN The Netherlands 
Telephone: +31-(0)-26-319-0500 
Fax: +31-(0)-26-319-05-05 
 
Onset 
470 MacArthur Boulevard 
Bourne, MA 02532 USA 
Telephone: 508-743-3210 
http://www.onsetcomp.com/  
HOBO loggers, radiometers, met 
sensors 
 
 

PH. Schenk GmbH & Co KG 
Jedleseer Strasse 59 
A-1210 Wien, Austria 
Telephone: +43/1-271-51-31-0 
E-mail: office@schenk.co.at 
http://www.schenk.co.at/schenk 
Radiometers 
 
Solar Light Company 
721 Oak Lane 
Philadelphia, PA 19126 USA 
Telephone: 215-927-4206 
http://solarlight.com/  
Radiometers 
 
Suntrace GmbH 
Brandstwiete 46 
20457 Hamburg 
Germany 
Telephone: +49-40-767-96-38-0 
http://www.suntrace.de/home.html  
Rotating shadowband irradiometer 
 
Yankee Environmental Systems, 
Inc. 
Montaque Industrial Park 
101 Industrial Road 
P.O. Box 746 
Turners Falls, MA 01376 USA 
Telephone: 413-863-0200 
http://www.yesinc.com/ 
Radiometers, data systems, sky 
imagers 
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Appendix B: International Energy Agency Solar 
Heating and Cooling Programme 
The Solar Heating and Cooling Programme (SHC) was founded in 1977 as one of the first 
multilateral technology initiatives (“Implementing Agreements”) of the International Energy 
Agency (IEA). Its mission is “to enhance collective knowledge and application of solar heating 
and cooling through international collaboration to reach the goal set in the vision of solar thermal 
energy meeting 50% of low temperature heating and cooling demand by 2050.” 

The member countries collaborate on projects (referred to as “Tasks”) in the fields of research, 
development, and demonstration and test methods for solar thermal energy and solar buildings. 

A total of 53 such projects have been initiated to date, 39 of which have been completed. 
Research topics include 

• Solar Space Heating and Water Heating (Tasks 14, 19, 26, 44) 

• Solar Cooling (Tasks 25, 38, 48, 53) 

• Solar Heat or Industrial or Agricultural Processes (Tasks 29, 33, 49) 

• Solar District Heating (Tasks 7, 45) 

• Solar Buildings/Architecture/Urban Planning (Tasks 8, 11, 12, 13, 20, 22, 23, 28, 37, 40, 
41, 47, 51, 52) 

• Solar Thermal and PV (Tasks 16, 35) 

• Daylighting/Lighting (Tasks 21, 31, 50) 

• Materials/Components for Solar Heating and Cooling (Tasks 2, 3, 6, 10, 18, 27, 39) 

• Standards, Certification, and Test Methods (Tasks 14, 24, 34, 43) 

• Resource Assessment (Tasks 1, 4, 5, 9, 17, 36, 46) 

• Storage of Solar Heat (Tasks 7, 32, 42). 

In addition to the project work, special activities include 

• SHC International Conference on Solar Heating and Cooling for Buildings and Industry 

• Solar Heat Worldwide—annual statistics publication 

• Memorandums of understanding with solar thermal trade organizations 

• Workshops and conferences.  
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Members 

• Australia 

• Austria  

• Belgium 

• Canada 

• China 

• Denmark 

• European 
Commission 

• Finland 

• France 

• Germany 

• Italy 

• Mexico 

• Netherlands 

• Norway 

• Portugal 

• Singapore 

• South Africa 

• Spain 

• Sweden 

• Switzerland 

• Turkey 

• United Kingdom 

• United States
 

Sponsors  
• ECREEE—Economic Community of West African States Centre for Renewable Energy 

and Energy Efficiency 

• European Copper Institute 

• Gulf Organization for Research and Development 

• RCREEE—Regional Center for Renewable Energy and Energy Efficiency 

 

Further Information 
For up-to-date information about the IEA SHC, including many free publications, please visit 
www.iea-shc.org.  
 

http://www.iea-shc.org/
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