S. Alessandrini, F. Davò, S. Sperati, M. Benini, and L. Delle-monache, Comparison of the economic impact of different wind power forecast systems for producers, Advances in Science and Research, vol.11, pp.49-53, 2014.
DOI : 10.5194/asr-11-49-2014

F. Molteni, R. Buizza, and T. N. Palmer, Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Quart, J. R. Meteorol. Soc, vol.529, pp.73-119, 1996.

J. B. Bremnes, Probabilistic wind power forecasts using local quantile regression, Wind Energy, vol.7, issue.1, pp.47-54, 2004.
DOI : 10.1002/we.107

B. G. Brown, R. W. Katz, and A. M. Murphy, Time Series Models to Simulate and Forecast Wind Speed and Wind Power, Journal of Climate and Applied Meteorology, vol.23, issue.8, pp.1184-1195, 1984.
DOI : 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2

G. Giebel, R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl, The State-of-the-Art in Short-Term Prediction of Wind Power: A Literature Overview, 2011.

C. Monteiro, H. Heko, R. Bessa, V. Miranda, A. Botterud et al., Wind Power Forecasting: State-of-the, Art, 2009.

F. Cassola and M. Burlando, Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output, Applied Energy, vol.99, pp.154-166, 2012.
DOI : 10.1016/j.apenergy.2012.03.054

P. Kou, F. Gao, and X. Guan, Sparse online warped Gaussian process for wind power probabilistic forecasting, Applied Energy, vol.108, pp.410-428, 2013.
DOI : 10.1016/j.apenergy.2013.03.038

J. Wang, A. Botterud, R. Bessa, H. Keko, L. Carvalho et al., Wind power forecasting uncertainty and unit commitment, Applied Energy, vol.88, issue.11, pp.4014-4023, 2011.
DOI : 10.1016/j.apenergy.2011.04.011

J. S. Jensenius and G. Cotton, The Development and Testing of Automated Solar Energy Forecasts Based on the Model Output Statistics (MOS) Technique, Proceedings of the 1st Workshop on Terrestrial Solar Resource Forecasting and on the Use on Satellites for Terrestrial Solar Resource Assessment, pp.2-5, 1981.

H. M. Diagne, M. David, P. Lauret, and J. Boland, Solar irradiation forecasting: State-of-the-art and proposition for future developments for small-scale insular grids, Proceedings of the World Renewable Energy Forum (WREF), pp.13-17, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00918150

D. Heinemann, E. Lorenz, and M. Girodo, Forecasting of solar radiation In Solar Energy Management for Electricity Generation from Local Level to Global Scale, pp.83-94, 2006.

H. T. Pedro and C. F. Coimbra, Assessment of forecasting techniques for solar power production with no exogenous inputs, Solar Energy, vol.86, issue.7, pp.2017-2028, 2012.
DOI : 10.1016/j.solener.2012.04.004

B. Amrouche and X. Le-pivert, Artificial neural network based daily local forecasting for global solar radiation, Applied Energy, vol.130, pp.333-341, 2014.
DOI : 10.1016/j.apenergy.2014.05.055

R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of Forecasting, vol.30, issue.4, pp.1030-1081, 2014.
DOI : 10.1016/j.ijforecast.2014.08.008

T. Hong, P. Pinson, and S. Fan, Global Energy Forecasting Competition 2012, International Journal of Forecasting, vol.30, issue.2, pp.357-363, 2014.
DOI : 10.1016/j.ijforecast.2013.07.001

O. Texier and N. Girard, Wind power forecasting: A practical evaluation study of different wind power prediction services, Proceedings of the European Wind Energy Conference and Exhibition, pp.16-19, 2009.

G. Kariniotakis, I. Martí, D. Casas, P. Pinson, T. S. Nielsen et al., What performance can be expected by short-term wind power prediction models depending on site characteristics, Proceedings of the European Wind Energy Conference (EWEC), pp.22-25, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00529266

H. Madsen, P. Pinson, G. Kariniotakis, H. A. Nielsen, and T. S. Nielsen, Standardizing the performance evaluation of short-term wind power prediction models, pp.475-489, 2005.

P. Pinson, H. A. Nielsen, J. K. Møller, H. Madsen, and G. Kariniotakis, Nonparametric probabilistic forecasts of wind power: Required properties and evaluation. Wind Energy, pp.497-516, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00525361

S. Alessandrini, S. Sperati, G. Kariniotakis, and P. Pinson, The Netherlands Available online: http://www.ewea, Proceedings of the EWEA Technology Workshop: Wind Power Forecasting, pp.3-4, 2013.

R. A. Pielke, W. R. Cotton, R. L. Walko, C. J. Tremback, W. A. Lyons et al., A comprehensive meteorological modeling system?RAMS, Meteorology and Atmospheric Physics, vol.20, issue.1-4, pp.69-91, 1992.
DOI : 10.1007/BF01025401

J. Harrington, The Effects of Radiative and Microphysical Processes on Simulated Warm and Transition-Season Arctic Stratus, 1997.

F. X. Diebold and R. S. Mariano, Comparing predictive accuracy, J. Bus. Econ. Stat, vol.13, pp.253-265, 2012.
DOI : 10.1080/07350015.1995.10524599

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Hersbach, Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems. Weather For, pp.559-570, 2002.

J. Dobschinski, How good is my forecast? Comparability of wind power forecast errors, Proceedings of the 13th International Workshop on Large Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, pp.11-13, 2014.

S. Alessandrini, S. Sperati, and P. Pinson, A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data, Applied Energy, vol.107, pp.271-280, 2013.
DOI : 10.1016/j.apenergy.2013.02.041

S. Alessandrini, L. Delle-monache, S. Sperati, and J. N. Nissen, A novel application of an analog ensemble for short-term wind power forecasting, Renewable Energy, vol.76, pp.768-781, 2015.
DOI : 10.1016/j.renene.2014.11.061

P. Bacher, H. Madsen, and H. A. Nielsen, Online short-term solar power forecasting, Solar Energy, vol.83, issue.10, pp.1772-1783, 2009.
DOI : 10.1016/j.solener.2009.05.016

W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker et al., A description of the Advanced Research WRF Version 2, National Center for Atmospheric Research, 2005.

R. J. Bessa, V. Miranda, A. Botterud, Z. Zhou, and J. Wang, Time-adaptive quantile-copula for wind power probabilistic forecasting, Renewable Energy, vol.40, issue.1, pp.29-39, 2012.
DOI : 10.1016/j.renene.2011.08.015