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Abstract 

 

Isothermal vapor-liquid equilibrium data (P-x-y) are presented for the 1-propene +1,1,2,3,3,3-

hexafluoroprop-1-ene and the  1-propene + 2,2,3-trifluoro-3-(trifluoromethyl)oxirane binary 

systems.  Both binary systems were studied at five temperatures, ranging from (279.36 to 

318.09) K, at pressures up to 2 MPa. The experimental vapor-liquid equilibrium data were 

measured using an apparatus based on the "static-analytic" method incorporating a single 

movable Rapid On-Line Sampler-Injector to sample the liquid and vapor phases at 

equilibrium. The expanded uncertainties are approximated on average as 0.07 K, 0.008 MPa, 

and 0.007 and 0.009 for the temperature, pressure, and both the liquid and vapor mole 

fractions, respectively.  A homogenous maximum-pressure azeotrope was observed for both 

binary systems at all temperatures studied. The experimental data were correlated with the 

Peng-Robinson equation of state using the Mathias-Copeman alpha function, paired with the 

Wong-Sandler mixing rule and the Non-Random Two Liquid activity coefficient model. The 

model provided very satisfactory representation of the phase equilibrium data measured. 
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1. Introduction 

This study is part of an on-going research programme investigating the thermodynamic 

properties of fluorocarbons and their mixtures [1; 2; 3; 4; 5; 6], and more specifically 

isothermal phase behaviour for binary mixtures involving either 1,1,2,3,3,3-hexafluoroprop-

1-ene or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane [6; 7; 8; 9; 10; 11; 12]. Vapor-liquid 

equilibrium (VLE) data play an integral part in the design process of numerous unit 

operations and chemical processes. Furthermore, VLE data is a core necessity for the 

development and validation of correlative and predictive thermodynamic models. 

Accordingly, accurate VLE data are required for the calculation of interaction energies 

between functional groups for group contribution methods such as PSRK [13]. 

VLE data were measured for the binary systems of propene (R1270) + 1,1,2,3,3,3-

hexafluoroprop-1-ene (R1216), and R1270 + trifluoro-3-(trifluoromethyl)oxirane. Trifluoro-

3-(trifluoromethyl)oxirane is more commonly known as hexafluoropropylene oxide (HFPO). 

To the best of our knowledge no VLE data have been published for the R1270 + HFPO 

binary system, and thus, all data presented herein for this system are new data. Concerning 

the R1270 + R1216 binary system, isothermal VLE data have been measured by Coquelet et 

al. [6] in the temperature range from (263.17 to 353.14) K. The data corresponding to this 

work were measured within same temperature range but at different isothermal conditions. 

Consequently, they may considered as useful complementary data. These two binary systems 

exhibit homogenous pressure-maximum (positive) azeotropes within the investigated 

temperature range. The new experimental data were correlated with the Peng-Robinson (PR) 

[14] equation of state (EoS) integrating the Mathias-Copeman (MC) alpha function [15], the 

Wong-Sandler (WS) mixing rule [16] and the Non-Random Two Liquid (NRTL) activity 

coefficient model [17].   



2. Experimental  

2.1 Materials 

Propene was supplied by Air Products (South Africa) with a certified purity greater than 

0.9995 in volume fraction. 1,1,2,3,3,3-Hexafluoro-1-propene and 2,2,3-Trifluoro-3-

(trifluoromethyl)oxirane were supplied by Pelchem (South Africa) with a certified purity 

greater than 0.999 in volume fraction. Apart from degassing via periodic vapor withdrawal, 

no further purification was undertaken. Gas chromatographic (GC) analysis is a classical 

method to validate the purities of each component. Unfortunately, all the impurities in each 

“pure” component are not known, and thus exact quantification was not possible. However, 

by GC analysis with a thermal conductivity detector (TCD) one can determine the ratio of 

peak areas of the impurities to the “pure” compound and thus give an indication of the purity 

of the sample. The Chemical Abstract Service (CAS) numbers, critical properties and 

molecular formulae of the relevant compounds are listed in table 1.  

2.2 Apparatus 

The apparatus used for the phase equilibrium measurements has been described in detail in 

previous works [10; 18], and thus, will only be discussed briefly herein. The apparatus 

follows the principle of the "static-analytic" method, and is conceptually similar to that of 

Laugier and Richon [19] and Valtz et al. [20]. The equilibrium cell (60 cm
3
) is constructed of 

stainless steel 316 and is equipped with two sapphire sights. Isothermal conditions are 

attained by submerging the equilibrium cell into a thermo-regulated liquid solution. The 

temperature of this liquid solution is controlled via a immersion circulator (Grant; GR 150). 

The liquid phase within the equilibrium cell is agitated via a Teflon-coated magnetic stirrer 

bar driven by an external rotating magnet using a variable speed stirring device (Heidolph; 

RZR 2021).  



The temperature within the equilibrium cell was measured by two 100 Ω platinum resistance 

thermometer (Pt100) probes inserted into cavities located at the top and base of the 

equilibrium cell respectively. The pressure within the equilibrium cell was measured via a 0 - 

10 MPa gauge transmitter (WIKA; P-10). The pressure transmitter was housed within a 

thermo-regulated aluminium block, to ensure that fluctuations in the ambient temperature 

would not influence the output signal of the pressure transmitter. The line connecting the 

pressure transmitter to the equilibrium cell was heat-traced as it protrudes above the thermo-

regulated liquid solution.  

The signals from both the Pt100 probes and the pressure transmitter are recorded in real-time 

via a data acquisition unit (Agilent ; HP 34970A). Samples of both the liquid and vapor 

phases are withdrawn individually from the equilibrium cell via a single mobile Rapid On-

Line Sampler-Injector (ROLSI
TM

) [21]. The vaporized samples are transferred directly to the 

GC (Shimadzu; GC-17A) using a carrier gas (helium). The lines connecting the ROLSI
TM

 to 

the GC are heat-traced to ensure that the sample flushed to the GC remains homogenous. The 

GC is fitted with a stainless steel 316 packed column (Porapak Q, 3 m in length) and 

equipped with a TCD.  Chromatograph peak analyses and integrations are performed using 

GC solutions V. 2.3 (Shimadzu). 

2.3 Calibrations 

The Pt100 probes were calibrated against a standard CTH 6500 calibration unit (WIKA). The 

P-10 pressure transmitter was calibrated against a CPH 6000 reference transmitter (WIKA). 

The reference instruments (CTH 6500 and CPH 6000) were calibrated by WIKA. The 

response of the TCD was calibrated by injecting known amounts of each component (direct 

injection method) via gastight syringes (SGE Analytic Science). The volumes of the gaseous 

components injected into the GC for calibration of the TCD ranged from 100 μL to 1 mL. 

The volume of injected gas was converted to the number of moles of component using the 



ideal gas equation. The pressure and temperature of the injected gas were assumed to be 

equal to the ambient conditions.  

2.4 Experimental procedure 

The loading lines and equilibrium cell were evacuated and the heavier component (R1216 or 

HFPO) was introduced first. Then the lighter component, propene, was subsequently charged 

into the equilibrium cell corresponding to the desired pressure for the first measurement. The 

cell contents were agitated, to ensure attainment of equilibrium. The line connecting the 

pressure transmitter to the equilibrium cell was heated to a temperature ten degrees above the 

cell temperature. Phase equilibrium was assumed to have been reached when the pressure 

readings stabilized, i.e. the pressure was constant for a period of at least 10 minutes, within 

the uncertainty of measurement. At equilibrium, both the vapor and liquid phases were 

sampled individually using the ROLSI
TM

. At least five samples for both the liquid and the 

vapor phases were analysed to check for measurement repeatability. Further equilibrium 

mixtures were prepared by adding additional amounts of propene; the abovementioned 

sampling procedure was repeated for each new mixture at equilibrium. The full procedure 

was repeated for the measurement of each P-x-y isotherm. 

2.5 Experimental uncertainty  

The estimation of experimental uncertainty has been detailed in communications by the 

National Institute of Standards and Technology (NIST) [22]. Furthermore, we have described 

in detail the procedures used to estimate the uncertainty with regard to VLE measurements in 

our previous work [12]. Briefly, the uncertainties are combined were necessary via the law of 

propagation of errors, which is based on a first-order Taylor series approximation [22]. The 

standard uncertainties for the variables in question are listed in table 2. The combined 

uncertainties 𝑢 𝜃𝑖  were converted to the combined expanded uncertainties 𝑈 𝜃𝑖  by 

applying a coverage factor of 2 (k = 2). The expanded uncertainty for temperature and 



pressure are: U(T) = 0.07 K and U(P) = 0.008 MPa respectively. Regarding phase 

composition, the expanded uncertainty for the liquid and vapor phase compositions were 

estimated on average as: U(x) = 0.007 and U(y) = 0.009.  

2.6 Data treatment 

Modeling of the high-pressure VLE data was undertaken using in-house thermodynamic 

software developed at the Mines ParisTech CTP laboratory [23]. The experimental data were 

regressed using the symmetric phi-phi approach, by coupling the PR equation of state with 

the NRTL activity coefficient model and WS mixing rule. The representation of vapor 

pressures with the PR-EoS was improved using the MC alpha function. Regression of the 

VLE data involves the adjustment of three binary interaction parameters; two associated with 

the NRTL activity coefficient model (τ12, τ21), and one associated with the WS mixing rule 

(k12). The NRTL parameters (τ12, τ21) are those originally proposed by Renon and Prausnitz 

[17]: 

𝜏𝑖𝑗 =
𝑔𝑖𝑗 −𝑔𝑗𝑗

𝑅𝑇
 (2) 

In order to reduce the number of parameters correlated, the non-randomness parameter α of 

the NRTL model was set to 0.3. The remaining model parameters were adjusted to the VLE 

data using a flash-type objective function, as the largest uncertainty is associated with both 

the vapor and liquid phase compositions. The flash-type objective function is:  

𝐹 =  100 𝑁𝑝    
𝑥𝑒𝑥𝑝 −𝑥𝑐𝑎𝑙

𝑥𝑒𝑥𝑝
 

2
𝑁𝑝

1 +   
𝑦𝑒𝑥𝑝 −𝑦𝑐𝑎𝑙

𝑦𝑒𝑥𝑝
 

2
𝑁𝑝

1                                          (3) 

where Np is the number of data points, x and y are the liquid and vapor phase compositions 

respectively, and the subscripts exp and cal denote the measured and calculated quantities. 

The objective function was minimized and the model parameters adjusted using the 

Levenberg-Marquardt algorithm [24]. We statistically analyze the quality of the data-fit using 



the average absolute deviation (AAD), average absolute relative deviation (AARD) and the 

Bias. The AAD is: 

𝐴𝐴𝐷 𝜃  =
1

𝑁𝑝
  𝜃 𝑒𝑥𝑝 − 𝜃 𝑐𝑎𝑙𝑐  

𝑁𝑝

1

 
(4) 

where 𝜃 𝑒𝑥𝑝  and 𝜃 𝑐𝑎𝑙𝑐  are the experimental and calculated values of a measurand 𝜃  (in this 

case x1 and y1), and Np is the total number of data points. The AARD and Bias are defined as: 

𝐴𝐴𝑅𝐷 𝜃  =
1

𝑁𝑝
 

 𝜃 𝑒𝑥𝑝 − 𝜃 𝑐𝑎𝑙𝑐  

𝜃 𝑒𝑥𝑝

𝑁𝑝

1

 (5) 

𝐵𝑖𝑎𝑠 𝜃  =
1

𝑁𝑝
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𝜃 𝑒𝑥𝑝

𝑁𝑝

1

 (6) 

 

 

 

  

 

 

 

 

 

 



3. Results and discussion 

Experimental vapor pressure data for R1270 are reported in table 3. The P-T data were 

modelled using the PR equation of state with the MC alpha function. The deviations of the 

data correlated by the model from experimental data are listed in table 3. The model 

accurately represents the vapor pressure data for R1270.  The experimental vapor pressure 

data for R1270 were also compared to reference values from REFPROP [25], the resulting 

average absolute deviation for pressure is 0.33%.  

P-x-y data are reported for the binary system of R1270 (1) + R1216 (2) at five temperatures, 

T = (288.07, 293.09, 299.47, 308.09 and 318.09) K in table 4.  P-x-y data are reported for the 

binary system of R1270 (1) + HFPO (2) at five temperatures, T = (279.36, 288.19, 298.35, 

308.18 and 317.12) K in table 5. Positive deviation from Raoult’s law is observed for both 

binary systems, resulting in the formation of pressure-maximum azeotropes for all of the 

measured isotherms (figures 1 and 2). The previously measured P-x-y data of Coquelet et al. 

[6] for the binary system of R1270 (1) + R1216 (2) at 293.12 K are plotted and compared to 

our experimental data at 293.09 K in figure 1. The data agree with that of Coquelet et al. [6] 

to within the experimental uncertainties. 

The model parameters and deviations between the experimental and modelled data using the 

PR equation of state coupled with the WS mixing rule and NRTL activity coefficient model 

are listed in table 6. The model parameters were fitted, firstly, individually to each isothermal 

data of each binary system, and secondly, simultaneously to data of all isotherms of each 

binary system respectively. The latter is more useful as it results in a single set of model 

parameters which can be used to describe all measured isotherms for a particular system in 

this study. The model parameters as well as the AAD, AARD and Bias are listed in table 6. 

The performance of the model is similar for both systems; an average AAD of approximately 

0.003 for both the liquid and vapor phase compositions is achieved. For comparison, we 



present P-x-y data predicted for the binary system of R1270 (1) + R1216 (2) using model 

parameters regressed from the data measured by Coquelet et al. [6]. Although, there is slight 

disagreement between the data, the data agrees to within the experimental uncertainty. The 

calculated azeotropic compositions and pressures for both binary systems are given in table 7. 

The azeotropic conditions agree well with those defined by Coquelet et al. [6]. Lastly, the 

relative volatility plots are displayed in figures 3 and 4 for the R1270 (1) + R1216 (2) and 

R1270 (1) + HFPO (2) binary systems respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion  

P-x-y data are reported for binary mixtures of propene with either 1,1,2,3,3,3-hexafluoroprop-

1-ene or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane at temperatures ranging from (279.36 to 

318.09) K. The two binary systems exhibit a pressure-maximum azeotrope at all measured 

temperatures. The data are well correlated using a single set of binary interaction parameters 

across the entire temperature range for each system using the Peng-Robinson equation of 

state including the Mathias-Copeman alpha function, the Wong-Sandler mixing rule and the 

Non-Random Two Liquid activity coefficient model. 
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TABLE 1 

Pure-component parameters and properties for propene (R1270), hexafluoropropylene 

(R1216) and hexafluoropropylene oxide (HFPO). 

 R1270
 
[6] R1216 [26] HFPO

 
[2] 

Component characterization  

CAS no. 115-07-1 116-15-4 428-59-1 

Molecular formula C3H6 C3F6 C3F6O 

Supplier and purity 99.95 (Air Products) 99.9 (Pelchem) 99.9 (Pelchem) 

GC Area >99.95 >99.9 >99.9 

Purification method Degassed Degassed Degassed 

Critical properties and acentric factor  

Tc (K) 364.9 358.9 359.3 

Pc (MPa) 4.600 3.136 2.931 

ω 0.1376 0.3529 0.3338 

Matthias-Copeman (MC) coefficients 

c1 0.6920
a
 0.8926 0.8749

b
 

c2 -2.105 -0.5100 -0.3222 

c3 11.253 3.1585 1.422 

a
 MC parameters for R1270 regressed from our experimental vapor pressure data. 

b
 MC parameters for HFPO regressed from vapor pressure data of Dicko et al. [2]. 

 

 

 

 

 

 

 

 



TABLE 1 

Standard uncertainty estimates and influences for the variables (pressure (P), temperature (T) 

and the liquid (x) and vapour (y) phase compositions) of this work. 

source of uncertainty estimate
a
 distribution influence 

P from CPH 6000 /kPa 0.2 rectangular P 

correlation for P/kPa 8 rectangular P 

T from CTH 6500/K 0.02 rectangular T 

correlation for T/K 0.05 rectangular T 

correlation for n of R-1270
b
 1.5 % rectangular x, y 

correlation for n of R-1216
b
 1.5 % rectangular x, y 

correlation for n of HFPO
b
 2.0 % rectangular x, y 

Volume of injected gas from syringe
c
 2 % rectangular x, y 

T of injected gas from syringe
c
 /K 2 rectangular x, y 

P of injected gas from syringe
c
 /kPa 1 rectangular x, y 

repeatability (average) of xi 𝜎 𝑥  = 0.002 Gaussian x 

repeatability (average) of yi 𝜎 𝑦  = 0.002 Gaussian y 
a
 Estimate treated as either a type A or type B distribution  

b
 Correlation of the number of moles (n) versus TCD peak area obtained by injecting known 

volumes of gas. 
c
 Uncertainties inherent to the direct injection method, estimated from the ideal gas law. 



TABLE 2 

Experimental vapor pressure data for R1270, including a comparison of the data to REFPROP [25] and data fitted to the PR equation of state 

using the MC alpha function. 

 REFPROP/MPa  PR-MC/MPa 

Texp/K Pexp/MPa Pcal/MPa ΔP/MPa
a
 (ΔP/Pexp)/%  Pcal/MPa ΔP/MPa

a
 (ΔP/Pexp)/% 

282.97 0.769 0.775 -0.006 -0.78  0.768 0.001 0.07 

287.57 0.873 0.878 -0.005 -0.57  0.875 -0.002 -0.19 

293.48 1.028 1.026 0.002 0.24  1.025 0.003 0.27 

298.02 1.152 1.151 0.002 0.13  1.152 0.000 0.01 

302.83 1.291 1.295 -0.004 -0.29  1.298 -0.007 -0.50 

307.67 1.458 1.453 0.005 0.36  1.456 0.002 0.14 

314.06 1.691 1.683 0.008 0.50  1.685 0.006 0.35 

318.36 1.854 1.852 0.003 0.15  1.853 0.001 0.06 

322.91 2.039 2.043 -0.004 -0.21  2.044 -0.004 -0.22 

327.27 2.239 2.240 -0.002 -0.08  2.239 0.000 -0.02 

a ∆𝑃 = 𝑃𝑒𝑥𝑝 − 𝑃𝑐𝑎𝑙 , where 𝑃𝑒𝑥𝑝  and 𝑃𝑐𝑎𝑙  are the experimental and calculated vapor pressures respectively. 

Expanded uncertainties (k = 2): U(T) = 0.07 K; U(P) = 0.008 MPa 

 

 



TABLE 3 

Experimental P-x-y data, including the temperature (T), pressure (P) and the liquid and 

vapour phase compositions (x1 and y1), for the binary system of R1270 (1) + R1216 (2) and 

the combined expanded uncertainty (U) (k = 2) for x1 and y1. 

T/K P/MPa x1 y1 U(x1) U(y1) 

288.07 0.627 0.076 0.182 0.003 0.006 

288.07 0.723 0.193 0.359 0.007 0.010 

288.07 0.801 0.298 0.468 0.009 0.011 

288.07 0.862 0.421 0.562 0.011 0.011 

288.07 0.915 0.589 0.665 0.011 0.010 

288.07 0.932 0.684 0.723 0.009 0.009 

288.07 0.938 0.802 0.797 0.007 0.007 

288.07 0.929 0.896 0.876 0.004 0.005 

288.07 0.906 0.960 0.943 0.002 0.002 

293.09 0.734 0.089 0.199 0.004 0.007 

293.09 0.821 0.182 0.334 0.006 0.010 

293.09 0.891 0.261 0.421 0.008 0.011 

293.09 0.932 0.320 0.471 0.009 0.011 

293.09 0.972 0.391 0.532 0.010 0.011 

293.09 1.021 0.512 0.612 0.011 0.010 

293.09 1.069 0.692 0.722 0.009 0.009 

293.09 1.072 0.792 0.788 0.007 0.007 

293.09 1.066 0.870 0.848 0.005 0.006 

293.09 1.042 0.939 0.921 0.003 0.003 

299.47 0.854 0.072 0.153 0.003 0.006 

299.47 0.939 0.141 0.266 0.005 0.008 

299.47 0.982 0.182 0.320 0.006 0.009 

299.47 1.042 0.241 0.388 0.008 0.010 

299.47 1.092 0.303 0.446 0.009 0.011 

299.47 1.142 0.371 0.505 0.010 0.011 

299.47 1.204 0.491 0.590 0.011 0.011 

299.47 1.218 0.521 0.610 0.011 0.010 

299.47 1.266 0.831 0.816 0.006 0.007 



299.47 1.238 0.930 0.910 0.003 0.004 

308.09 1.134 0.112 0.210 0.004 0.007 

308.09 1.242 0.203 0.328 0.007 0.009 

308.09 1.333 0.290 0.416 0.009 0.011 

308.09 1.432 0.405 0.512 0.010 0.011 

308.09 1.512 0.537 0.610 0.011 0.010 

308.09 1.551 0.692 0.714 0.009 0.009 

308.09 1.556 0.832 0.815 0.006 0.007 

308.09 1.539 0.896 0.869 0.004 0.005 

308.09 1.511 0.953 0.933 0.002 0.003 

318.09 1.423 0.096 0.173 0.004 0.006 

318.09 1.542 0.178 0.277 0.006 0.009 

318.09 1.692 0.291 0.401 0.009 0.010 

318.09 1.852 0.457 0.538 0.011 0.011 

318.09 1.950 0.642 0.670 0.010 0.010 

318.09 1.965 0.711 0.721 0.009 0.009 

318.09 1.964 0.803 0.790 0.007 0.007 

318.09 1.948 0.862 0.841 0.005 0.006 

318.09 1.916 0.924 0.901 0.003 0.004 

Expanded uncertainties (k = 2): U(T) = 0.07 K; U(P) = 0.008 MPa 

 

 

 

 

 

 

 

 

 

 



TABLE 4 

Experimental P-x-y data, including the temperature (T), pressure (P) and the liquid and 

vapour phase compositions (x1 and y1), for the binary system of R1270 (1) + HFPO (2) and 

the combined expanded uncertainty (U) (k = 2) for x1 and y1. 

T/K P/MPa x1 y1 U(x1) U(y1) 

279.36 0.643 0.243 0.448 0.008 0.011 

279.36 0.690 0.354 0.516 0.010 0.011 

279.36 0.719 0.445 0.566 0.012 0.011 

279.36 0.737 0.516 0.605 0.012 0.011 

279.36 0.755 0.617 0.661 0.011 0.010 

279.36 0.763 0.698 0.708 0.010 0.010 

279.36 0.764 0.759 0.745 0.009 0.009 

279.36 0.755 0.860 0.816 0.006 0.007 

279.36 0.749 0.891 0.842 0.004 0.006 

279.36 0.736 0.931 0.882 0.004 0.005 

279.36 0.723 0.962 0.918 0.002 0.004 

288.19 0.694 0.104 0.282 0.004 0.009 

288.19 0.759 0.156 0.349 0.006 0.010 

288.19 0.823 0.238 0.419 0.008 0.011 

288.19 0.867 0.320 0.470 0.010 0.012 

288.19 0.904 0.399 0.520 0.011 0.011 

288.19 0.941 0.508 0.583 0.012 0.011 

288.19 0.963 0.586 0.637 0.011 0.010 

288.19 0.975 0.655 0.682 0.010 0.010 

288.19 0.970 0.836 0.805 0.006 0.007 

288.19 0.963 0.863 0.828 0.005 0.007 

288.19 0.956 0.886 0.852 0.005 0.006 

288.19 0.928 0.949 0.918 0.002 0.004 

298.35 0.814 0.050 0.164 0.002 0.006 

298.35 0.890 0.091 0.241 0.004 0.008 

298.35 0.975 0.151 0.318 0.006 0.010 

298.35 1.057 0.237 0.390 0.008 0.011 

298.35 1.119 0.314 0.449 0.010 0.011 



298.35 1.187 0.425 0.523 0.011 0.011 

298.35 1.243 0.553 0.611 0.012 0.011 

298.35 1.273 0.717 0.722 0.009 0.009 

298.35 1.259 0.841 0.823 0.006 0.007 

298.35 1.253 0.869 0.840 0.005 0.006 

298.35 1.232 0.913 0.889 0.004 0.004 

308.18 1.230 0.149 0.289 0.006 0.009 

308.18 1.297 0.201 0.336 0.007 0.010 

308.18 1.363 0.265 0.386 0.009 0.011 

308.18 1.446 0.356 0.453 0.010 0.011 

308.18 1.543 0.495 0.555 0.012 0.011 

308.18 1.584 0.583 0.622 0.011 0.011 

308.18 1.606 0.659 0.683 0.010 0.010 

308.18 1.598 0.822 0.810 0.007 0.007 

308.18 1.592 0.849 0.827 0.006 0.007 

308.18 1.584 0.861 0.845 0.005 0.006 

308.18 1.558 0.908 0.894 0.004 0.005 

308.18 1.536 0.945 0.927 0.002 0.003 

317.12 1.363 0.082 0.175 0.005 0.007 

317.12 1.519 0.160 0.272 0.006 0.009 

317.12 1.661 0.265 0.359 0.009 0.010 

317.12 1.752 0.337 0.421 0.010 0.011 

317.12 1.820 0.406 0.475 0.011 0.011 

317.12 1.877 0.481 0.531 0.011 0.011 

317.12 1.916 0.540 0.580 0.012 0.011 

317.12 1.932 0.569 0.604 0.011 0.011 

317.12 1.965 0.668 0.687 0.010 0.010 

317.12 1.949 0.835 0.821 0.006 0.007 

317.12 1.924 0.878 0.867 0.005 0.005 

317.12 1.895 0.921 0.908 0.003 0.005 

Expanded uncertainties (k = 2): U(T) = 0.07 K; U(P) = 0.008 MPa 

 

 



TABLE 5 

Model parameters regressed for the PR equation of state (MC alpha function) involving the WS mixing rule (kij) and NRTL activity coefficient 

model (τij), and statistical analysis of the data-fit for the liquid and vapour phase compositions (x1 and y1). 

 model parameters  statistical analysis 

Temperature/K 𝜏12/J.mol
-1

 𝜏21/J.mol
-1

 𝑘12  AAD(x1) AARD(x1)/% Bias(x1)/% AAD(y1) AARD(y1)/% Bias(y1)/% 

R1270 (1) + R1216 (2) 

288.07 2522 697 0.120  0.003 1.44 -0.47 0.004 1.18 -0.48 

293.09 2557 726 0.109  0.004 0.98 0.07 0.004 0.75 -0.10 

299.47 2547 686 0.120  0.001 0.58 0.38 0.002 0.57 -0.47 

308.09 2619 666 0.108  0.005 1.13 0.50 0.004 0.81 0.27 

318.09 2701 303 0.138  0.002 0.71 0.15 0.002 0.41 0.13 

(298.07 – 308.09)
a
 2634 678 0.112  0.004 1.25 0.47 0.005 1.05 0.11 

R1270 (1) + HFPO (2) 

279.36 5971 5073 -0.303  0.004 0.63 0.14 0.004 0.56 -0.28 

288.19 5230 4888 -0.247  0.003 1.17 0.76 0.002 0.35 -0.14 

298.35 5150 4489 -0.225  0.002 0.70 -0.37 0.003 0.48 0.48 

308.18 5205 4248 -0.217  0.003 0.76 -0.68 0.003 0.39 0.39 

317.12 4923 3971 -0.184  0.002 0.66 -0.52 0.003 0.48 0.37 

(279.36 – 317.12)
a
 5406 4556 -0.244  0.004 0.93 -0.21 0.005 0.97 0.30 

a
 Binary interaction parameters regressed over all isotherms simultaneously.



TABLE 6 

Azeotropic pressures (P) and compositions (x1) calculated via the PR equation of state 

coupled with the WS mixing rule and NRTL equation of state. Azeotropic conditions 

calculated from the correlations given by Coquelet et al. [6] for the binary system of R1270 

(1) + R1216 (2) appear in the parentheses. 

T/K P/MPa x1 

R1270 (1) + R1216 (2) 

288.07 0.939 (0.939) 0.785 (0.787) 

293.09 1.076 (1.074) 0.780 (0.781) 

299.47 1.269 (1.267) 0.773 (0.775) 

308.09 1.566 (1.566) 0.763 (0.765) 

318.09 1.970 (1.973) 0.750 (0.754) 

R1270 (1) + HFPO (2) 

279.36 0.764 0.740 

288.19 0.980 0.739 

298.35 1.274 0.734 

308.18 1.613 0.729 

317.12 1.971 0.722 

Expanded uncertainties (k = 2): U(T) = 0.07 K; U(P) = 0.008 MPa; U(x) = 0.007 

 

 

 

 



 

FIGURE 1. P-x-y data for the R1270 (1) + R1216 (2) binary system. Experimental data at: 

, 288.07 K; , 293.09 K; , 299.47 K; , 308.09 K; , 318.09 K; , Coquelet et al. [6] at 

293.12 K. Modelled data using the PR equation of state, MC alpha function, WS mixing rule 

and NRTL activity coefficient model: this work is represented by the solid black line; data 

predicted using the parameters of  Coquelet et al. [6] are represented by the dashed line. Error 

bars indicate the expanded uncertainty (k = 2) for composition only.  
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FIGURE 2. P-x-y data for the R1270 (1) + HFPO (2) binary system. Experimental data at: 

, 279.36 K; , 288.19 K ; , 298.35 K; , 308.18 K; , 317.12 K. Modelled data using the 

PR equation of state, MC alpha function, WS mixing rule and NRTL activity coefficient 

model are represented by the solid black line. Error bars indicate the expanded uncertainty (k 

= 2) for composition only. 
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FIGURE 3. Plot of the relative volatility for the R1270 (1) + R1216 (2) binary system. 

Experimental data at: , 288.07 K; , 293.09 K; , 299.47 K; , 308.09 K; , 318.09 K; , 

Coquelet et al. [6] at 293.12 K.  Modelled data using the PR equation of state, MC alpha 

function, WS mixing rule and NRTL activity coefficient model are represented by the solid 

black line.  The dashed black line represents where the relative volatility is equal to unity. 

Error bars indicate the expanded uncertainty (k = 2) for the relative volatility only. 
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FIGURE 4. Plot of the relative volatility for the R1270 (1) + HFPO (2) binary system. 

Experimental data at: , 279.36 K; , 288.19 K ; , 298.35 K; , 308.18 K; , 317.12 K. 

Modelled data using the PR equation of state, MC alpha function, WS mixing rule and NRTL 

activity coefficient model are represented by the solid black line.  The dashed black line 

represents where the relative volatility is equal to unity. Error bars indicate the expanded 

uncertainty (k = 2) for the relative volatility only. 

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

0,0 0,2 0,4 0,6 0,8 1,0

α
1
2

x1


