S. Beucher and C. Lantuéjoul, Use of watersheds in contour detec-605 tion, Proc. Int. Workshop Image Process., Real-Time Edge Motion 606 Detection/Estimation, p.5, 1979.

S. Beucher and F. Meyer, The morphological approach to segmentation, p.608

F. Meyer, Un algorithme optimal pour la ligne de partage des 611 eaux, e Congrés Reconnaissance Formes Intell, pp.612-847, 1991.

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, p.615
DOI : 10.1109/34.87344

R. Achanta, A. Shaji, K. Smith, P. Lucchi, S. Fua et al., SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.11, pp.2274-2282, 2012.
DOI : 10.1109/TPAMI.2012.120

O. Monga, An optimal region growing algorithm for image seg-624 mentation, Int. J. Pattern Recognit. Artif. Intell, vol.1, 1987.

B. Marcotegui and F. Meyer, Bottom-up segmentation of image 628 sequences for coding, Ann. Télécommun, vol.52, pp.7-8, 1997.

X. Ren and J. Malik, Learning a classification model for segmentation, Proceedings Ninth IEEE International Conference on Computer Vision, p.632
DOI : 10.1109/ICCV.2003.1238308

A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson et al., TurboPixels: Fast Superpixels Using Geometric Flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.12, pp.2290-2297, 2009.
DOI : 10.1109/TPAMI.2009.96

J. Wang and X. Wang, VCells: Simple and efficient superpixels using 641 edge-weighted centroidal Voronoi tessellations, IEEE Trans. Pattern, vol.642

O. Veksler, Y. Boykov, and P. Mehrani, Superpixels and supervoxels in 647 an energy optimization framework, Proc. 11th Eur. Conf. Comput. 648 Vis, pp.211-224, 2010.

P. Soille, Morphological Image Analysis: Principles and Applications, p.651, 2003.

B. Andres, U. Köthe, M. Helmstaedter, W. Denk, and F. A. Hamprecht, Segmentation of SBFSEM volume data of neural tissue by hier-653 archical classification, Pattern Recognition, p.654

J. Stawiaski, E. Decencière, and F. Bidault, Interactive liver tumor 656 segmentation using graph cuts and watershed, Proc. MICCAI, 657, p.7, 2008.

P. Neubert and P. Protzel, Compact Watershed and Preemptive SLIC: On Improving Trade-offs of Superpixel Segmentation Algorithms, 2014 22nd International Conference on Pattern Recognition, p.660
DOI : 10.1109/ICPR.2014.181

C. Vachier and F. Meyer, Extinction values: A new measurement 663 of persistence, Proc. IEEE Workshop Non Linear Signal

D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human 666 segmented natural images and its application to evaluating segmentation 667

M. Faessel and M. Bilodeau, SMIL: Simple morphological image 670 library, LRDE, Tech. Rep, p.8, 2013.