Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Unsupervised classification of multivariate geostatistical data: Two algorithms

Abstract : With the increasing development of remote sensing platforms and the evolution of sampling facilities in mining and oil industry, spatial datasets are becoming increasingly large, inform a growing number of variables and cover wider and wider areas. Therefore, it is often necessary to split the domain of study to account for radically different behaviors of the natural phenomenon over the domain and to simplify the subsequent modeling step. The definition of these areas can be seen as a problem of unsupervised classification, or clustering, where we try to divide the domain into homogeneous domains with respect to the values taken by the variables in hand. The application of classical clustering methods, designed for independent observations, does not ensure the spatial coherence of the resulting classes. Image segmentation methods, based on e.g. Markov random fields, are not adapted to irregularly sampled data. Other existing approaches, based on mixtures of Gaussian random functions estimated via the expectation-maximization algorithm, are limited to reasonable sample sizes and a small number of variables. In this work, we propose two algorithms based on adaptations of classical algorithms to multivariate geostatistical data. Both algorithms are model free and can handle large volumes of multivariate, irregularly spaced data. The first one proceeds by agglomerative hierarchical clustering. The spatial coherence is ensured by a proximity condition imposed for two clusters to merge. This proximity condition relies on a graph organizing the data in the coordinates space. The hierarchical algorithm can then be seen as a graph-partitioning algorithm. Following this interpretation, a spatial version of the spectral clustering algorithm is also proposed. The performances of both algorithms are assessed on toy examples and a mining dataset.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01219704
Contributeur : Thomas Romary <>
Soumis le : vendredi 23 octobre 2015 - 10:19:15
Dernière modification le : jeudi 24 septembre 2020 - 16:34:18
Archivage à long terme le : : vendredi 5 mai 2017 - 13:35:31

Fichier

paper_cgsi_rev.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Thomas Romary, Fabien Ors, Jacques Rivoirard, Jacques Deraisme. Unsupervised classification of multivariate geostatistical data: Two algorithms. Computers & Geosciences, Elsevier, 2015, Statistical learning in geoscience modelling: Novel algorithms and challenging case studies, 85, pp.96-103. ⟨10.1016/j.cageo.2015.05.019⟩. ⟨hal-01219704⟩

Partager

Métriques

Consultations de la notice

437

Téléchargements de fichiers

601