On the impact of socio-economic factors on power load forecasting - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE BigData Année : 2014

On the impact of socio-economic factors on power load forecasting

(1) , (2) , (3) , (2)
1
2
3
Etta Grover-Silva
  • Fonction : Auteur
  • PersonId : 972513
Pietro Michiardi
  • Fonction : Auteur
  • PersonId : 1084771

Résumé

In this paper, we analyze a public dataset of electricity consumption collected over 3,800 households for one year and half. We show that some socioeconomic factors are critical indicators to forecast households' daily peak (and total) load. By using a random forests model, we show that the daily load can be predicted accurately at a fine temporal granularity. Differently from many state-of-the-art techniques based on support vector machines, our model allows to derive a set of heuristic rules that are highly interpretable and easy to fuse with human experts domain knowledge. Lastly, we quantify the different importance of each socioeconomic feature in the prediction task.
Fichier principal
Vignette du fichier
On the impact of socio-economic factors on power load forcasting_author version.pdf (439.06 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01223513 , version 1 (03-11-2015)

Identifiants

Citer

Yufei Han, Xiaolan Sha, Etta Grover-Silva, Pietro Michiardi. On the impact of socio-economic factors on power load forecasting. IEEE BigData, 2014, ⟨10.1109/BigData.2014.7004299⟩. ⟨hal-01223513⟩
156 Consultations
575 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More