G. Wood and M. Newborough, Dynamic energy-consumption indicators for domestic appliances: environment, behaviour and design, Energy and Buildings, vol.35, issue.8, pp.821-841, 2003.
DOI : 10.1016/S0378-7788(02)00241-4

F. Mcloughlin, A. Duffy, and M. Conlon, Characterising domestic electricity consumption patterns by dwelling and occupant socio-economic variables: An Irish case study, Energy and Buildings, vol.48, pp.240-248, 2012.
DOI : 10.1016/j.enbuild.2012.01.037

T. Valley and A. , Energy Vision 2020: Integrated Resource Plan/Environmental Impact Statement, 1995.

Z. Kolter, F. Jr, and J. , A large-scale study on predicting and contextualizing building energy usage, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp.330-338, 2011.

M. Centra, Hourly Electricity Load Forecasting: An Empirical Application to the Italian Railways, World Academy of Science, Engineering and Technology, vol.5, pp.888-895, 2011.

K. A. Hesham and M. Nazeeruddin, Electric load forecasting: literature survey and classification of methods, International Journal of Systems Science, vol.33, pp.23-34, 2002.

S. F. Humeau, T. K. Wijaya, M. Vasirani, and K. Aberer, Electricity load forecasting for residential customers: Exploiting aggregation and correlation between households, 2013 Sustainable Internet and ICT for Sustainability (SustainIT), pp.1-6, 2013.
DOI : 10.1109/SustainIT.2013.6685208

S. Aman, Y. Simmhan, and V. K. Prasanna, Improving Energy Use Forecast for Campus Micro-grids Using Indirect Indicators, 2011 IEEE 11th International Conference on Data Mining Workshops, pp.1-9, 2011.
DOI : 10.1109/ICDMW.2011.95

Z. Aung, M. Touky, J. R. Williams, and S. Herrero, Towards Accurate Electricity Load Forecasting in Smart Grids, Proceedings of The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications, pp.52-57, 2012.

V. Miranda and C. Monteiro, Fuzzy inference applied to spatial load forecasting, PowerTech Budapest 99. Abstract Records. (Cat. No.99EX376), pp.35-40, 1999.
DOI : 10.1109/PTC.1999.826435

C. W. Fu and T. Nguyen, Models for long-term energy forecasting, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), pp.235-239, 2003.
DOI : 10.1109/PES.2003.1267174

C. Beckel, L. Sadamori, and S. Santini, Towards automatic classification of private households using electricity consumption data Automatic socio-economic classification of households using electricity consumption data, Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in BuildingsProceedings of the fourth international conference on Future energy systems, pp.169-17675, 2012.

F. Eiber, Pruning decision trees and lists, 2000.

C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

J. Abreu and F. Pereira, Household Electricity Consumption Routines and Tailored Feedback, Proceedings of ACEEE Summer Study on Energy Efficiency, pp.193-206, 2012.

B. S. Kermanshahi and H. Iwamiya, Up to year 2020 load forecasting using neural nets, Electric Power System Research, pp.787-797, 2002.
DOI : 10.1016/S0142-0615(01)00086-2

J. W. Taylor and R. Buizza, Neural network load forecasting with weather ensemble predictions, IEEE Transactions on Power Systems, vol.17, issue.3, pp.626-632, 2002.
DOI : 10.1109/TPWRS.2002.800906

M. Mohandes, Support vector machines for short-term electrical load forecasting, International Journal of Energy Research, vol.9, issue.4, pp.335-345, 2002.
DOI : 10.1002/er.787

E. Desouky, A. A. Elkateb, and M. M. , Hybrid adaptive techniques for electric-load forecast using ANN and ARIMA, IEE Proceedings - Generation, Transmission and Distribution, vol.147, issue.4, pp.213-217, 2000.
DOI : 10.1049/ip-gtd:20000521

L. Breiman, Random Forests, Machine Learning, pp.5-32, 2001.

A. Spark, Eletricity Customer Behaviour Trial, Commission for Energy Regulation, vol.23, 2011.

V. N. Vapnik, The Nature of Statistical Learning Theory, 2002.

I. Witten, E. Frank, and M. Hall, Data mining, ACM SIGMOD Record, vol.31, issue.1, 2011.
DOI : 10.1145/507338.507355

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, L. et al., LIBLINEAR: A library for large linear classification, Journal of Machine Learning ResearchJournal of Machine Learning Research, vol.9, pp.1871-1874, 2008.