H. Altendorf and D. Jeulin, Stochastic Modeling of a Glass Fiber Reinforced Polymer, Mathematical Morphology and Its Applications to Image and Signal Processing, pp.439-450, 2011.
DOI : 10.1007/978-3-642-21569-8_38

URL : https://hal.archives-ouvertes.fr/hal-00834392

D. F. Azzimonti, F. Willot, and D. Jeulin, Optical properties of deposit models for paints: full-fields FFT computations and representative volume element, Journal of Modern Optics, vol.32, issue.7
DOI : 10.1017/CBO9780511613357

URL : https://hal.archives-ouvertes.fr/hal-00836118

J. M. Belov, E. B. Lomov, S. V. Verpoest, I. Peters, T. Roose et al., Modelling of permeability of textile reinforcements: lattice Boltzmann method FFTbased bounds on the permeability of complex microstructures, Optics Composites Sc. Tech. Int. J. Num. An. Meth. Geomechanics, vol.60, issue.3816, pp.519-528, 2004.

C. Boutin, Study of permeability by periodic and self-consistent homogenisation, European Journal of Mechanics - A/Solids, vol.19, issue.4, pp.603-632, 2000.
DOI : 10.1016/S0997-7538(00)00174-1

URL : https://hal.archives-ouvertes.fr/hal-00943756

P. C. Carman, Fluid flow through granular beds, Chemical Engineering Research and Design, vol.75, pp.150-166, 1937.
DOI : 10.1016/S0263-8762(97)80003-2

H. Cheng, G. Papanicolaou, and S. Childress, Flow past periodic arrays of spheres at low Reynolds number, Journal of Fluid Mechanics, vol.335, issue.566, pp.189-212, 1972.
DOI : 10.1017/S002211209600448X

M. Doi, L. Dormieux, and D. Kondo, A New Variational Approach to the Diffusion and the Flow Problem in Porous Media, Journal of the Physical Society of Japan, vol.40, issue.2, pp.567-572, 1976.
DOI : 10.1143/JPSJ.40.567

X. Du and M. Ostoja-starzewski, On the size of representative volume element for Darcy law in random media, Proc. R. Soc. A 462, pp.2949-2963, 2006.
DOI : 10.1098/rspa.2006.1704

I. H. Ene, ´. E. Sanchez-palencia, J. Happel, and E. J. Hinch, ´ Equations et phénomènes de surface pour lécoulement dans un modele de milieu poreux Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles An averaged-equation approach to particle intercations in a fluid suspension Howells, I.: Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects, Journal de mécanique AIChE J. Fluid Mech. J. Fluid Mech, vol.14, issue.643, pp.73-108, 1958.

D. Jeulin and M. Moreaud, Percolation dagrégats multi-´ echelles de sphères et de fibres ? Application aux nanocomposites, Proc. Matériaux, pp.341-348, 2006.

L. D. Johnson, J. T. Plona, C. Scala, F. Pasierb, and H. Kojima, Tortuosity and Acoustic Slow Waves, Physical Review Letters, vol.49, issue.25, pp.1840-1844, 1982.
DOI : 10.1103/PhysRevLett.49.1840

D. L. Johnson, J. Koplik, R. Dashen, T. Kanit, S. Forest et al., Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics, vol.24, issue.-1, pp.379-40213, 1987.
DOI : 10.1121/1.388036

M. R. Karim, K. Krabbenhoft, and A. V. Lyamin, Permeability determination of porous media using large-scale finite elements and iterative solver, International Journal for Numerical and Analytical Methods in Geomechanics, vol.40, issue.6, pp.991-1012, 2014.
DOI : 10.1002/nag.2245

S. Koo and A. S. Sangani, Effective-medium theories for predicting hydrodynamic transport properties of bidisperse suspensions, Physics of Fluids, vol.14, issue.10, pp.3522-3533, 2002.
DOI : 10.1063/1.1503352

J. Kozeny and S. Kuwabara, Ueber kapillare leitung des wassers im boden The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers, Sitzungsber Akad Wiss Wien J. Phys. Soc. Japan, vol.136, issue.144, pp.271-306, 1927.

B. H. Lee and S. K. Lee, Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR microimaging study: Network approach to void percolation in a pack of unequal spheres, J. Hydrology Phys. Rev. Lett, vol.496, issue.779, pp.122-141, 1996.

J. J. Martin, L. W. Mccabe, and C. C. Monrad, Pressure drop through stacked spheres. Effect of orientation, Chem. Eng. Progress, vol.47, pp.91-94, 1951.

N. Martys, S. Torquato, D. Bentz, and G. Matheron, Universal scaling of fluid permeability for sphere packings, Physical Review E, vol.50, issue.1, pp.403-408, 1965.
DOI : 10.1103/PhysRevE.50.403

G. Matheron, G. Matheron, and G. Matheron, Revue de l'institut français du pétrole et annales des combustibles liquides 21 The theory of regionalized variables and its applications, Elements pour une theorie des milieux poreux, pp.1697-1706, 1966.

M. Matyka, Z. Koza, V. Monchiet, G. Bonnet, G. Lauriat et al., A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium A Fourier based numerical method for computing the dynamic permeability of periodic porous media Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments, How to Calculate Tortuosity Easily? In: AIP Conf. Proc. 1453, pp.17-22, 2008.

C. Peyrega and D. Jeulin, Estimation of acoustic properties and of the representative volume element of random fibrous media, Journal of Applied Physics, vol.113, issue.10, p.104901, 2013.
DOI : 10.1063/1.4794501

S. Prager, Viscous Flow through Porous Media, Physics of Fluids, vol.4, issue.12, pp.1477-1482, 1961.
DOI : 10.1063/1.1706246

P. Jr, D. J. Redenbach, C. Wirjadi, O. Rief, S. Wiegmann et al., Percolation through voids around overlapping spheres: a dynamically based finite-size scaling analysis Modelling a ceramic foam for filtration simulation, Phys. Rev. E Adv. Eng. Mat, vol.89, issue.133, pp.12148-171, 2011.

F. J. Richardson and N. W. Zaki, The sedimentation of a suspension of uniform spheres under conditions of viscous flow, Chemical Engineering Science, vol.3, issue.2, pp.65-73, 1954.
DOI : 10.1016/0009-2509(54)85015-9

M. D. Rintoul and S. Torquato, Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model, Journal of Physics A: Mathematical and General, vol.30, issue.16, pp.585-592, 1997.
DOI : 10.1088/0305-4470/30/16/005

J. Rubinstein and S. Torquato, Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds, Journal of Fluid Mechanics, vol.1, issue.-1, pp.25-46, 1989.
DOI : 10.1016/0301-9322(82)90047-7

Y. Saad and M. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

A. S. Sangani, A. Acrivos, S. Feng, B. I. Halperin, and P. N. Sen, Slow flow through a periodic array of spheres, Random heterogeneous materials: microstructure and macroscopic properties, pp.343-360, 1982.
DOI : 10.1016/0301-9322(82)90047-7

S. Torquato, B. Lu, L. H. Weissberg, and S. Prager, Rigorous bounds on the fluid permeability: Effect of polydispersivity in grain size, Physics of Fluids A: Fluid Dynamics, vol.2, issue.4, pp.487-490, 1970.
DOI : 10.1063/1.857748

F. Willot and D. Jeulin, Elastic behavior of composites containing Boolean random sets of inhomogeneities, International Journal of Engineering Science, vol.47, issue.2, pp.313-324, 2009.
DOI : 10.1016/j.ijengsci.2008.09.016

URL : https://hal.archives-ouvertes.fr/hal-00426398

F. Willot, D. Jeulin, and A. Wiegmann, Elastic and electrical behavior of some random multiscale highly-contrasted composites Computation of the permeability of porous materials from their microstructure by FFF-Stokes, Int. J. Multiscale Comput. Eng. Berichte Fraunhofer ITWM, vol.9, issue.129, pp.308-326, 1984.

A. A. Zick and G. M. Homsy, Stokes flow through periodic arrays of spheres, Journal of Fluid Mechanics, vol.12, issue.-1, pp.13-26, 2006.
DOI : 10.1016/0009-2509(74)80200-9