]. A. Agnoli, N. Bozzolo, R. Logé, J. Franchet, J. Laigo et al., Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy ??? Application to a nickel-base superalloy, Computational Materials Science, vol.89, pp.233-241, 2014.
DOI : 10.1016/j.commatsci.2014.03.054

URL : https://hal.archives-ouvertes.fr/hal-00983317

]. M. Avrami, Kinetics of Phase Change. I, General Theory Journal of Chemical Physics, vol.7, pp.1103-1112, 1939.

]. M. Bernacki, Y. Chastel, T. Coupez, and R. E. Loge, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1161, 2008.
DOI : 10.1016/j.scriptamat.2008.02.016

URL : https://hal.archives-ouvertes.fr/hal-00509731

]. M. Bernacki, H. Resk, T. Coupez, and R. E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simulation in Materials Science and Engineering, vol.17, issue.6, p.64006, 2009.
DOI : 10.1088/0965-0393/17/6/064006

URL : https://hal.archives-ouvertes.fr/hal-00508362

]. M. Bernacki, R. Loge, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
DOI : 10.1016/j.scriptamat.2010.11.032

URL : https://hal.archives-ouvertes.fr/hal-00577039

]. A. Fabiano, R. Logé, and M. Bernacki, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Computational Materials Science, vol.92, pp.305-312, 2014.
DOI : 10.1016/j.commatsci.2014.05.060

URL : https://hal.archives-ouvertes.fr/hal-01023803

]. K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.224-238, 2012.
DOI : 10.1016/j.commatsci.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-00699554

]. R. Logé, M. Bernacki, H. Resk, L. Delannay, H. Digonnet et al., Linking plastic deformation to recrystallization in metals using digital microstructures, Philosophical Magazine, vol.14, issue.30-32, pp.3691-3712, 2008.
DOI : 10.1016/j.actamat.2006.10.022

]. P. Bernard, S. Bag, K. Huang, and R. Logé, A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineering: A, vol.528, issue.24, pp.7357-7367, 2011.
DOI : 10.1016/j.msea.2011.06.023

URL : https://hal.archives-ouvertes.fr/hal-00612438

]. Y. Jin, B. Lin, M. Bernacki, G. S. Rohrer, A. D. Rollett et al., Annealing twin development during recrystallization and grain growth in pure nickel, Materials Science and Engineering: A, vol.597, pp.295-303, 2014.
DOI : 10.1016/j.msea.2014.01.018

URL : https://hal.archives-ouvertes.fr/hal-00945387

]. J. Pisseloup, P. Bocquet, I. Poitrault, and R. Dumont, Optimisation of the open die forging of heavy pieces in stainless steel through the control of grain, pp.14-17, 2000.

]. A. Rollett, M. J. Luton, and D. J. Srolovitz, Microstructural simulation of dynamic recrystallization, Acta Metallurgica et Materialia, vol.40, issue.1, pp.43-55, 1992.
DOI : 10.1016/0956-7151(92)90198-N

]. B. Scholtes, A. Settefrati, and M. Bernacki, Advances in level-set modelling of recrystallization at the microscopic scale -development of the Digi-µ® software, ESAFORM 2015, 2015.

]. M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method ??? Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23-24, 2015.
DOI : 10.1016/j.apm.2015.03.014

URL : https://hal.archives-ouvertes.fr/hal-01139858