T. Wantanabe, Grain boundary design and control. Res. Mech, pp.47-84, 1984.

D. L. Olmsted, S. M. Foiles, and E. A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy, Acta Materialia, vol.57, issue.13, pp.3694-3703, 2009.
DOI : 10.1016/j.actamat.2009.04.007

G. Palumbo, E. M. Lehockey, and P. Lin, Applications for grain boundary engineered materials, JOM, vol.4, issue.2, pp.40-43, 1998.
DOI : 10.1007/s11837-998-0248-z

V. Randle, Twinning-related grain boundary engineering, Acta Materialia, vol.52, issue.14, pp.4067-4081, 2004.
DOI : 10.1016/j.actamat.2004.05.031

M. Kumar, A. J. Schwartz, and W. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials, Proc. R. Soc. Lond. A, pp.2599-2612, 1926.
DOI : 10.1016/S1359-6454(02)00090-3

J. R. Cahoon, Q. Li, and N. L. Richards, Microstructural and processing factors influencing the formation of annealing twins, Materials Science and Engineering: A, vol.526, issue.1-2, pp.56-61, 2009.
DOI : 10.1016/j.msea.2009.07.021

Q. Li, J. R. Cahoon, and N. L. Richards, On the calculation of annealing twin density, Scripta Materialia, vol.55, issue.12, pp.1155-1158, 2006.
DOI : 10.1016/j.scriptamat.2006.08.013

W. Wang, S. Lartigue-korinek, F. Brisset, A. L. Helbert, J. Bourgon et al., Formation of annealing twins during primary recrystallization of two low stacking fault energy Ni-based alloys, Journal of Materials Science, vol.23, issue.5, pp.2167-2177, 2015.
DOI : 10.1007/s10853-014-8780-4

D. G. Brandon, The structure of high-angle grain boundaries. Acta Metall, pp.1479-1484, 1966.

M. H. Alvi, S. W. Cheong, J. P. Suni, H. Weiland, and A. D. Rollett, Cube texture in hot-rolled aluminum alloy 1050 (AA1050)???nucleation and growth behavior, Acta Materialia, vol.56, issue.13, pp.3098-3108, 2008.
DOI : 10.1016/j.actamat.2008.02.037

Y. Jin, B. Lin, A. D. Rollett, G. S. Rohrer, M. Bernacki et al., Thermo-mechanical factors influencing annealing twin development in nickel during recrystallization, Journal of Materials Science, vol.50, issue.589, pp.5191-5203, 2015.
DOI : 10.1007/s10853-015-9067-0

URL : https://hal.archives-ouvertes.fr/hal-01159091

W. Wang, F. Brisset, A. L. Helbert, D. Solas, I. Drouelle et al., Influence of stored energy on twin formation during primary recrystallization, Materials Science and Engineering: A, vol.589, pp.112-118, 2014.
DOI : 10.1016/j.msea.2013.09.071

Y. Jin, B. Lin, M. Bernacki, G. S. Rohrer, A. D. Rollett et al., Annealing twin development during recrystallization and grain growth in pure nickel, Materials Science and Engineering: A, vol.597, pp.295-303, 2014.
DOI : 10.1016/j.msea.2014.01.018

URL : https://hal.archives-ouvertes.fr/hal-00945387

Y. Jin, Annealing Twin Formation Mechanism, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01136225

M. Detrois, R. L. Goetz, R. C. Helmink, and S. Tin, Modeling the effect of thermal???mechanical processing parameters on the density and length fraction of twin boundaries in Ni-base superalloy RR1000, Materials Science and Engineering: A, vol.647, pp.157-162, 2015.
DOI : 10.1016/j.msea.2015.09.022

C. S. Pande, M. A. Imam, and B. B. Rath, Study of annealing twins in fcc metals and alloys, Metallurgical Transactions A, vol.52, issue.11, pp.2891-2896, 1990.
DOI : 10.1007/BF02647209

H. Hu and C. S. Smith, The formation of low-energy interfaces during grain growth in alpha and alpha-beta brasses. Acta Metall, pp.638-646, 1956.

H. Gleiter, The formation of annealing twins. Acta Metall, pp.1421-1428, 1969.

P. Bernard, S. Bag, K. Huang, and R. E. Logé, A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineering: A, vol.528, issue.24, pp.7357-7367, 2011.
DOI : 10.1016/j.msea.2011.06.023

URL : https://hal.archives-ouvertes.fr/hal-00612438

M. Hillert, On the theory of normal and abnormal grain growth. Acta Metall, pp.227-238, 1965.

J. Bystrzycki, W. Przetakiewicz, and K. J. Kurzyd?owski, Study of annealing twins and island grains in F.C.C. alloy, Acta Metallurgica et Materialia, vol.41, issue.9, pp.2639-2649, 1993.
DOI : 10.1016/0956-7151(93)90133-D

K. H. Song, Y. B. Chun, and S. K. Hwang, Direct observation of annealing twin formation in a Pb-base alloy, Materials Science and Engineering: A, vol.454, issue.455, pp.454-455, 2007.
DOI : 10.1016/j.msea.2006.11.151

M. Bernacki, R. E. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
DOI : 10.1016/j.scriptamat.2010.11.032

URL : https://hal.archives-ouvertes.fr/hal-00577039

Y. Jin, N. Bozzolo, A. D. Rollett, and M. Bernacki, 2D finite element modeling of misorientation dependent anisotropic grain growth in polycrystalline materials: Level set versus multi-phase-field method, Computational Materials Science, vol.104, pp.108-123, 2015.
DOI : 10.1016/j.commatsci.2015.03.012

URL : https://hal.archives-ouvertes.fr/hal-01148034

B. Scholtes, M. Shakoor, A. Settefrati, P. O. Bouchard, N. Bozzolo et al., New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, vol.109, pp.388-398, 2015.
DOI : 10.1016/j.commatsci.2015.07.042

URL : https://hal.archives-ouvertes.fr/hal-01479197

S. A. Saltykov, The Determination of the Size Distribution of Particles in an Opaque Material from a Measurement of the Size Distribution of Their Sections, Proceedings of the Second International Congress for Stereology, pp.8-13, 1967.
DOI : 10.1007/978-3-642-88260-9_31