Adaptive low-rank approximation and denoised Monte Carlo approach for high-dimensional Lindblad equations - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review Année : 2015

Adaptive low-rank approximation and denoised Monte Carlo approach for high-dimensional Lindblad equations

(1, 2) , (3, 4) , (1)
1
2
3
4

Résumé

We present a twofold contribution to the numerical simulation of Lindblad equations. First, an adaptive numerical approach to approximate Lindblad equations using low-rank dynamics is described: a deterministic low-rank approximation of the density operator is computed, and its rank is adjusted dynamically, using an on-the-fly estimator of the error committed when reducing the dimension. On the other hand, when the intrinsic dimension of the Lindblad equation is too high to allow for such a deterministic approximation, we combine classical ensemble averages of quantum Monte Carlo trajectories and a denoising technique. Specifically, a variance reduction method based upon the consideration of a low-rank dynamics as a control variate is developed. Numerical tests for quantum collapse and revivals show the efficiency of each approach, along with the complementarity of the two approaches.
Fichier principal
Vignette du fichier
1509.07960v2.pdf (379.65 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01252664 , version 1 (07-01-2016)

Identifiants

Citer

Claude Le Bris, Pierre Rouchon, Julien Roussel. Adaptive low-rank approximation and denoised Monte Carlo approach for high-dimensional Lindblad equations. Physical Review, 2015, 92 (6), pp.062126. ⟨10.1103/PhysRevA.92.062126⟩. ⟨hal-01252664⟩
429 Consultations
139 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More