Skip to Main content Skip to Navigation
Journal articles

Adaptive low-rank approximation and denoised Monte Carlo approach for high-dimensional Lindblad equations

Claude Le Bris 1, 2 Pierre Rouchon 3, 4 Julien Roussel 1
CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
4 QUANTIC - QUANTum Information Circuits
ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6, MINES ParisTech - École nationale supérieure des mines de Paris, CNRS - Centre National de la Recherche Scientifique : UMR8551
Abstract : We present a twofold contribution to the numerical simulation of Lindblad equations. First, an adaptive numerical approach to approximate Lindblad equations using low-rank dynamics is described: a deterministic low-rank approximation of the density operator is computed, and its rank is adjusted dynamically, using an on-the-fly estimator of the error committed when reducing the dimension. On the other hand, when the intrinsic dimension of the Lindblad equation is too high to allow for such a deterministic approximation, we combine classical ensemble averages of quantum Monte Carlo trajectories and a denoising technique. Specifically, a variance reduction method based upon the consideration of a low-rank dynamics as a control variate is developed. Numerical tests for quantum collapse and revivals show the efficiency of each approach, along with the complementarity of the two approaches.
Complete list of metadata

Cited literature [12 references]  Display  Hide  Download
Contributor : François Chaplais <>
Submitted on : Thursday, January 7, 2016 - 9:46:55 PM
Last modification on : Monday, December 14, 2020 - 9:51:05 AM
Long-term archiving on: : Friday, April 8, 2016 - 1:36:51 PM


Files produced by the author(s)



Claude Le Bris, Pierre Rouchon, Julien Roussel. Adaptive low-rank approximation and denoised Monte Carlo approach for high-dimensional Lindblad equations. Physical Review, American Physical Society (APS), 2015, 92 (6), pp.062126. ⟨10.1103/PhysRevA.92.062126⟩. ⟨hal-01252664⟩



Record views


Files downloads