Clathrate equilibrium data for CO$_2$+N$_2$ mixtures with TBAB, TBAF, CP, TBAB+CP, TBAF+CP promoters

Fragkiskos Tzirakis1, Paolo Stringari2, Christophe Coquelet2, Nicolas von Solms1 and Georgios M. Kontogeorgis1

1Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2MINES ParisTech, PSL Research University, CTP-Centre Thermodynamic of Processes, 35 Rue Saint Honoré, 77305 Fontainebleau, France

Keywords: clathrates, promotion, carbon dioxide
Corresponding author: Fragkiskos Tzirakis, frtz@kt.dtu.dk

Abstract

Carbon Dioxide capture and sequestration (CCS) is nowadays an important area of research for alleviating CO$_2$ emissions worldwide. According to [1], CO$_2$ is globally the largest pollutant to which the global warming is attributed. Consequently, hydrates can become of great importance as they form the basis for a new technology that concerns CO$_2$ capture from flue gases (hydrate crystallization). In this work hydrate equilibrium data measured at the Centre Thermodynamic of Processes in MINES ParisTech (France) are presented as part of a collaborative project funded by the Danish Technical Research Council. More particularly, in this study experimental results for hydrate dissociation with several promoters are presented. The isochoric method is used to determine the gas hydrate dissociation points. Different CO$_2$+N$_2$ gas mixtures were used with presence of promoters such as tetra-butylammonium bromide (TBAB), tetra-butylammonium fluoride (TBAF), cyclopentane (CP) and mixtures of TBAB and TBAF with CP. The combination of TBA halides with CP was inspired by [2] as it came out synergetic effect that enhances promotion between TBAB (5% w/w) and CP (5% v/v). The results have shown synergetic effect for 20% w/w TBAB+CP (5% v/v) and partly (>30 bar) for 5% w/w TBAF+CP (5% v/v). Concerning experiments with pure promoter, there is excellent consistency between our results and literature for different gas mixtures and promoter concentrations. Moreover, they exhibit very good agreement with existing literature.

Finally, experimental uncertainties for temperature, pressure, and molar composition are also presented.

Reference