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Abstract—This papers studies the kind of control that is
needed to efficiently coordinate multiple automated vehicles. An
intersection is chosen in order to present the main concept but
consequences of this work also hold for other areas of cooperation,
such as lane changes or maneuvers in parking lots. We chose the
classical framework for multi-robots systems: the coordination
space i.e. we assume the future paths are known and fixed.
The problem is to coordinate the speeds of the vehicles. We
first prove a theorem stating that a smooth feedback control
cannot always avoid gridlocks: for more than 2 vehicles, there
are always starting states ending into gridlocks. The paper then
proposes some ways to avoid this drawback, leading to a better
conceptual way to take decision in such a cooperative system, in
order to have provable efficient decision and control.

I. INTRODUCTION

Vehicle automation has proven feasible in the past years.
Though there are still lots of challenges for a full scale
introduction of such systems, industrial companies and author-
ities clearly envision the deployment of fleets of automated
vehicles (see e.g. Citymobil-2 or AutoNet 2030 European
project [1], [2]). Among the problems to be solved there is the
efficient coordination of several automated vehicles. It has been
demonstrated (e.g. DARPA Urban Challenge) that automated
vehicles can maneuver and avoid each others, but they are
over-cautious and there are concerns that such maneuvering
algorithms would jam intersections in case of a full scale
deployment.

Cooperative ITS have now being standardized so that
vehicles can rely on a much better communication to exchange
perception elements or coordinate their maneuvers. However
there are several different strategies to control automated
vehicles and it is yet unclear what is the best one (or how
to chose a good one, depending on the context). We can
cite autonomous approaches, where all vehicles decide their
own plans, opposed to fully cooperative approaches where
plans are centralized. Swarms belong to the first strategy
while traffic lights offer an example of centralized decision
making. Another paradigm is to plan (and coordinate) plans in
advance as opposed to reactive schemes. Several intermediate
strategies have been proposed to combine the advantages of
these approaches (centralized coordination and decentralized
control, navigation functions... [3]–[7]). However, comparison
are made difficult because they mainly rely on simulation (e.g.
[8]). This paper intends to contribute to this topic by showing
theoretically some solutions should be disregarded.

To focus our investigation, we will restrict maneuvers to
choosing the speed by using the coordination space. This
means we do not consider lateral control except for turning

(but vehicles keep their lane and have defined paths). This
is not absolutely realistic but in general intersections are not
areas where lots of lateral maneuvering are expected and this
assumption is quite reasonable and has been considered for
a while [9]. It allows to decouple path planning and the
scheduling of the vehicles: a system of n vehicles is described
by the n curvilinear abscissa of the vehicles along their paths:
x = (x1, . . . , xn). Several planning approaches [10]–[13] have
been proposed in this framework: speed profiles are computed
centrally and then vehicle control boils down to keep track
of this pre-calculated trajectories. In previous research [14]–
[16] we have shown that, under mild assumptions, all feasible
trajectories (i.e. without collision) can be split into homotopy
classes, each one described uniquely by a priority graph.
However, this decomposition does not give the best trajectory.
What has been demonstrated is that we can chose heuristically
a good priority, and within this priority we are able to build
a control law ensuring no collision and no deadlock (and we
can also find the best trajectory, but only within this homotopy
class). It has been also shown that vehicles can optimize their
control in a distributed way (by a distributed MPC scheme
using some communication).

The main drawback of this method lies in the central
decision making that underlies the choice a priority graph (i.e.
the homotopy class). Note that all planning approaches have
the same drawback: the practical workaround is to re-plan if
too large a deviation occurs. But there exists other methods
that do not require such centralized decision making; these
approaches are called reactive and there is generally no plan.
A very general way to do so is to have a feedback control:
the speeds of the vehicles are computed depending only on
the global state x of the system (i.e. position of all vehicles):
ẋ = u(x). And in many cases the feedback is also local,
meaning a vehicle takes into account only the state of the
neighboring vehicles (such as Laplacian feedback). Such a
closed control loop is known to be much more stable than the
open loop approach of planning and following the plan. Most
distributed approaches belong to this framework and they have
been proved to be fairly efficient, even though in very high
traffic loads on cannot rely on a purely distributed approach.

So the question of this paper is: given an intersection
and n vehicles, can we find a feedback control that performs
well for any initial state x0? We answer by the negative in
Theorem 1 and Corollary 1; then we offer an analysis of how
a feedback control should be combined with some decision
making in order to improve the efficiency of the system.
Therefore the contribution of this paper is the introduction of a
conceptual framework to define where control is efficient and



what decision making (of a discrete nature) should be.

After this introduction of the context, the paper is organized
as follow: first the framework is described; then the theorem
is stated and a proof is sketched. For the sake of clarity, we
decided not to have a complete detailed mathematical proof
since there would be too much notation and special cases.
Finally we discuss the consequences of this theorem: we show
what avenues of research are open to improve the efficiency
of reactive schemes and so to keep their good properties.

II. MATHEMATICAL FRAMEWORK

This section describes briefly the priority-based frame-
work and its approach to the coordination problem (see also
[14]). The n vehicles moving in the intersection area are
described by their n curvilinear abscissa along their paths:
x = (x1, . . . , xn). We assume the intersection is bounded so
that by an affine scaling we can set x ∈ [0, 1]n. For each pair
(i, j) of vehicles, the states (xi, xj) where there is a collision
between vehicles i and j are χobs

ij ⊂ [0, 1]2. Technically χobs
ij

is a convex open set such that there is no collision state
near the entrance (xi < ε) or at the exit (xi > 1 − ε) of
the intersection; Note that the intersection area is practically
chosen large enough to contain all the interaction: for a typical
intersection we could have 100 m of entrance lane, 20 m of
crossing and 80 m of exit lane so that the obstacle region would
lie within (.5, .6) for each coordinate and can be much smaller
(and even empty). The union of all pair-wise collision regions
is χobs = ∪i,jχobs

ij with a slight abuse of notation (χobs
ij is

in fact a cylinder set in [0, 1]n). A state is collision-free if
x 6∈ χobs.

Fig. 1. An illustration of the concepts with 2 vehicles: real space, coordination
space and priorities

We assume that vehicles move only forward so that the
speed is always positive and bounded: ẋi(t) ∈ [0, V ] for all
i and t. Note that for every couple of vehicles with a non-
empty obstacle region, one vehicle necessarily passes before
or after the other one, which naturally yields the notion of
priority as invariant of trajectories homotopy classes. We will
not detail all aspects of this notion because it is not necessary
for Theorem 1 but it is fundamental in the decision making
we explain later. We assume a first-order control:

ẋ(t) = u(t, x(t)) (1)

In a pure open-loop planning, the control u only depends on
time: u = u(t), while in a pure feedback control, u depends

only on the state : u = u(x). We will study this second case.
Note that a system subject to a first order feedback-controlled
dynamics boils down to that case since we would have

ẋ = f(x, u(x)) = ũ(x)

where ũ : x → f(x, u(x)). Systems with higher order
derivatives can also be considered but notation becomes bushy.

The system starts at a point x0 where at least one coordi-
nate is zero (latest arrived vehicle). We must assume not only
that all vehicles are not colliding (x0 6∈ χobs), but a stronger
hypothesis that x0 is not colliding and is reachable from
0 = (0, . . . , 0) 6∈ χobs by a continuous path of non-colliding
initial states. In other words the set of non-colliding initial
states is connected. The end point is 1 = (1, . . . , 1). Note that
when a vehicle reaches abscissa 1, it has no interaction with
all other vehicles so that we can set its speed to V ; however, to
keep the system within [0, 1]n, we halt it at 1 hence its speed
is null. This may lead to a discontinuity in the control but this
is artificial and it can be technically handed out at the price of
extra notation without benefit, so we will here set aside this
technicality.

A trajectory {x(t), t ∈ [0, T ]} is feasible if x(0) is a
starting point, x(T ) = 1 (liveness condition: there is a finite
exit time), x(t) is collision-free for any t ∈ [0, T ] and
ẋ(t) ∈ [0, V ]n. For x0 to be eligible, we further assume that
x0 does not necessary lead to a gridlock, therefore there exists
a feasible trajectory with x(0) = x0. Our problem is to build
an efficient control as in Equation (1), mapping all eligible
starting points into feasible trajectories (avoiding collisions and
reaching the end point 1).

III. THEOREM

The main result of this paper is the following Theorem.

Theorem 1: Consider a model of an intersection as de-
scribed above. Then there is no feedback control u that is
simultaneously smooth, that maps all eligible entry points into
feasible trajectories and for which there are at least two distinct
homotopy classes.

In order to sketch a rigorous proof, we need to further
define our terms. Since we consider a feedback control u, the
evolution of a state is given by

ẋ(t) = u(x(t)) and x(0) = x0. (2)

This is a typical ordinary first-order differential equation whose
properties are detailed in [17]. A classical smoothness condi-
tion for u is to be Lipschitz continuous. Here we further know
that u is bounded since 0 ≤ u ≤ V ; therefore trajectories exist,
are unique and are defined for all t ≥ 0 (but we artificially
stop the coordinates to keep trajectories within the compact
set [0, 1]n). And the trajectories are continuous with respect
to their initial starting point (for any finite time horizon). To
distinguish between starting points and trajectories, we shall
denote by Φu(x0) a trajectory that is solution of the system (2),
i.e. Φu(x0, t) = x(t) for t ≥ 0. The choice a smooth feedback
control u yields a continuous mapping from the initial states
into feasible trajectories: x0 → Φu(x0). Note that the set of
all Φu(x0) (for all feasible initial states) is a set of trajectories
and as such can be divided in homotopy classes that we call
the homotopy classes of the control u (and to distinguish from



the priority graph and the homotopy classes of the feasible
trajectories).

a) Proof: The proof shows the contradiction of the
hypotheses. First we show that under the hypotheses, there
exists a uniform bound for exit times. By hypothesis, for each
starting point x0, there exists an exit time denoted by T (x0).
Assume infx0 T (x0) = ∞. Then there exists a sequence of
starting points with indefinitely increasing exit times. Since
the set of entry points is compact (the obstacle region χobs

is open and so are the invalid starting points), there exists a
point of accumulation for this sequence. By continuity of the
trajectories, the exit time for the trajectory associated with that
entry point is infinite. This contradicts the existence of an exit
time (liveness condition). Therefore infx0 T (x0) = T <∞.

Since the exit time is uniformly bounded, all trajectories
are globally continuous with respect to their starting points.
Now, we assumed that all starting points are reachable from
starting point 0. This means we can build a continuous path of
starting points from any pair of starting points. By continuity of
the trajectories with respect to their starting points, this means
there exists a continuous transformation between any pair of
feasible trajectories: hence there exists a unique homotopy
class. This contradicts the hypothesis of having at least two
homotopy classes.

The proof is concluded with this contradiction.

The author is aware of a few hidden technicalities. Just
to mention one, the proof that the entry set is compact is
made difficult because we excluded the initial states that lead
necessarily to a gridlock. This is very technical. If one can
(by making too simple assumptions) exclude the accumulation
points of the above proof, then we in fact cut the entry set
into disconnected components and there is a smooth control
on each one: this means we can have several homotopy classes
for this control with their own smooth feedback control. But
this is artificial in the sense that we exclude exactly the critical
points for which the control leads to a deadlock.

IV. THEORETICAL AND PRACTICAL CONSEQUENCES

This section intends to make Theorem 1 and its conse-
quences clearer. We begin by a review of our main assump-
tions. Then formulate some theoretical corollaries and provide
an analysis of the meaning of Theorem 1 in term of decision.
Finally we discuss what can be the practical implication of
Theorem 1: can we use it to improve state-of-the art systems?

A. Discussion of hypotheses

Several assumptions have been made. We will not discuss
some well established hypotheses because it has been made
previously: the coordination space and its fixed path assump-
tion is considered as relevant.

The first hypothesis we made is the smoothness of the
control: it should be Lipschitz continuous. This is not an
obvious assumption and we will exhibit later some non-smooth
(discontinuous) control that could fit with a better cooperative
control. However most of the controls, especially distributed
controls (swarms...) are smooth (and even several times differ-
entiable). This is because feedback control is related to errors

and uncertainties: a discontinuous control may easily lead to
unstable systems (and practically to vibrations). Due to errors
in the perception, the measured state would jump from one
side of the discontinuity to the other side leading to sudden
changes in the control. To our knowledge, there is few work
on discontinuous feedback control.

Fig. 2. Illustration of a blocking initial point: The blue disk is the
obstacle region; the white region is collision-free and there the feedback
control is represented as a vector field (black arrows); the trajectories are
the integral lines (e.g. green line for the vectors represented). The black
integral line starting from the lower-left corner (point 0) never ends because
when approaching the obstacle region the vector field vanishes: it is a critical
trajectory. It splits the trajectories in 2 homotopy classes (red and green) with
2 different priorities.

The second strong hypothesis concerns the critical trajec-
tories, mentioned at the end of the previous section as the the
trajectories corresponding to accumulation (initial) points in
the proof. Besides the technicalities that were detailed, we can
explain the existence of these critical trajectories. There are
indeed lots of them because they mark the boundary between
two homotopy classes. Let us consider the case with n = 2 and
an X crossing with one vehicle from south and the second from
east; each go straight. When vehicles arrive at very different
times, there is no interaction so they can drive normally (say
at maximum speed). When they arrive at the same time, rules
(say priority to the right) apply and south vehicle has to let east
vehicle pass. But how long has south to wait? Now Theorem 1
states that there exists a time when east vehicle arrives later
than the south vehicle and there is a conflict between south
having to wait and willing to pass: if this priority rule is softly
encoded (by a continuous control), it leads to a deadlock; an
illustration of this is also given in Figure 2. So one way to
do is to exclude these critical trajectories (or have a special
processing), but it would be rather artificial since a slightly
different control would move this boundary. We show later it
should be better considered as a question of decision, not of
control. Please note that the word priority in this paragraph



is related to the rules while in the priority framework the
same word is related to a topological invariant: the semantics
is related but not exactly the same.

The third hypothesis is related to the uniqueness of the
homotopy class. In a normal cooperative system there are
many homotopy classes (encoded by a priority graph, or
priority for short). As soon as two vehicles may collide,
there is a non-empty collision set, leading to two classes of
trajectories: one vehicle first or second. We have shown in the
previous paragraph what are the consequences of this division.
Thereafter we will always assume we have a system with
several (indeed huge) number of priority graphs (the number
of binary relations between n objects). Note that there are
two ways to define homotopy classes: in the space of feasible
trajectories and the subset of trajectories generated by a control
u which is one-to-one with the entry points. Theorem 1 can
be seen as stating that choosing a smooth control u forces to
chose only one priority among all possibilities.

B. Theoretical consequences

The previous section shows that under rather acceptable
assumptions there are interesting consequences of Theorem 1.
This section intends to show that Theorem 1 explicits the
idea of decision. A decision is seen here as a discrete choice
that impacts the control the system. The last paragraph of the
previous section gives a hint toward that: adopting a smooth
feedback control u means an implicit decision making: a
unique priority is encoded into u. It is very clear (and our
previous papers explicit this construction) that it is better to
first decide which priority is best, then to build a smooth
feedback control. This is explicit versus implicit decision
making. And we see that the decision is related to priorities: it
is precisely the choice of one priority graph, i.e. one homotopy
class. Note that Theorem 1 does not give any hint about the
choice of the best priority, but it tells we have to make a choice.
Not making a choice leaves it implicit or potentially inefficient
as the next corollary states.

Corollary 1: For a system as in Theorem 1, for any smooth
feedback control u mapping entry points into at least two
distinct homotopy classes, there exists an entry point for which
the system will globally stop (gridlock).

This is a consequence of the Theorem: we have assumed
existence and continuity of u, but several realized homotopy
classes (meaning trajectories produced by u are not all homo-
topic). Therefore the last assumption is not true: some initial
points have non-feasible trajectories.

From previous discussion we see that these critical trajecto-
ries are at the boundary between two homotopy classes. Note
that the system globally stops but some vehicles may have
passed the intersection. We simply mean that the exit time is
infinite (indeed the remaining vehicles will not be stopped but
their speed will decrease exponentially) so that a subset of
vehicles remains blocked within the intersection.

A partial solution to that challenge would be to consider
discontinuous controls. Indeed, in our previous crossing exam-
ple, we can set a time where south is first and goes maximal
speed, then east is first and goes maximal speed (and assume
this holds also for the exact time). This control is clearly dis-
continuous but makes somehow sense. Of course there should

be no error otherwise both vehicles could collide at maximum
speed. In fact a deeper analysis shows that the critical trajectory
is highly unstable so that the system can reach quickly safe
trajectories. But this requires a discontinuous control with an
arbitrary critical point.

The previous consideration reveals the need for an ef-
ficiency criteria. Unfortunately such a criteria is difficult: a
fairly good one is the total exit time defined above. However
it is not always very helpful. Another criteria is to have a
work-conservative system: at least one vehicle should be at
maximum speed in the intersection. It is weaker than the total
exit time but easier to use. A smooth control can be work-
conservative but only within one priority: this means that some
vehicles can wait a lot without any need. So we would like to
define work-conservative as maintaining at least one vehicle at
maximum speed within the colliding area (a much more limited
area). Unfortunately such an area is difficult to formalize. But
keeping the idea, one sees that the vehicle that goes maximum
speed cannot be determined by a continuous control: this is
the decision to take.

This is how we envision future work: when vehicles are
rather far from each other, a smooth control is used. When they
arrive in areas where collision may happen, a decision has to
be taken. This decision has to be taken for at least the two of
them, most probably using communication. Once the decision
is taken the vehicles can again follow a smooth control. Such
a method also show that priorities must be decided in a timely
manner: allocating priorities too early is not optimal.

C. Practical consequences

As we have seen previously in our discontinuous control
example, critical trajectories are generally unstable. This ex-
plains why practically smooth feedback control is so effective
and useful. Theorem 1 shows here only two things: first in very
complex situation this instability could be slow and it could
be worth having more “aggressive” schemes like discontinuous
control. Second, some kind of discrete decision making could
enhance the reactive schemes (using any kind of signals).

Finally we conclude with a very obvious remark from the
daily life: a big question is where and when to take decision.
This refers mathematically to ambiguous (or critical) starting
points: these are the place where there is a need for cooperative
decision. Now we believe the decision has to be taken in a
neighborhood of these critical points. And the precise place
where decision should be taken is almost surely related to the
noise model. It is obvious that with neither noise nor error
an open loop scheme is optimal so that we can have an early
decision, even an implicit decision making. This is surely not
true for stochastic models.

V. CONCLUSION

This paper highlights a negative theorem linking feedback
control, choice and efficiency. This theorem shows that we can-
not expect building optimal controls for cooperative systems
with a purely reactive scheme. Some decision are to be taken.
And we highlight the need for a well designed decision making
in order to keep a system reactive with feedback control.



This paper is intentionally made simple to start the dis-
cussion during the ITSC conference, before a more detailed
paper in a journal with a more rigorous proof. For the same
reason I allow myself to raise an interesting point made by a
reviewer was: “Is reactive scheme (feedback control) the only
choice? A lot of optimal control strategies, like MPC, also only
require local information”. My belief is that as soon as MPC
criteria are smooth and local (and for any control strategy), an
equivalent of Theorem 1 holds. This is clearly more difficult to
prove (especially the local part of it) though the same concepts
hold.

Future research has been stated in several places of this
paper. There is a large avenue of research for cooperative
control: optimizing the place where decision have to be taken,
trying to have a distributed decision making using suitable
communication protocols, designing good feedback controls
that fit well with the decision making (e.g. avoiding a discon-
tinuity at the time of the decision)...
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