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Abstract

We address the day-ahead pump scheduling problem for a class of branched water networks with one pumping station
raising water to tanks at different places and levels. This common class is representative of rural drinking water
distribution networks, though not exclusively so. Many sophisticated heuristic algorithms have been designed to tackle
the challenging general problem. By focusing on a class of networks, we show that a pure model-based approach relying
on a tractable mathematical program is pertinent for real-size applications. The practical advantages of this approach are
that it produces optimal or near-optimal solutions with performance guarantees in near real-time, and that it is replicable
without algorithmic development. We apply the approach to a real drinking water supply system and compare it to the
current operational strategy based on historical data. An extensive empirical analysis assesses the financial and practical
benefits: (1) it achieves significant savings in terms of operation costs and energy consumption, (2) its robustness to
dynamic pricing means that demand-response can be efficiently implemented in this type of energy-intensive utility.

Keywords: pump scheduling, branched water networks, demand-response, Mixed-Integer Non-Linear Programming,
convex relaxation

1. Introduction

In typical drinking water distribution networks, water
is collected, treated, and pressurized at pumping stations,
then raised to elevated tanks and water towers, and finally
supplied by gravity to local customers [1].5

In developed countries, water utilities are among the
largest consumers of energy in municipalities, and nearly
all of the electricity purchased is used for pumping [2].
The motives for installing computer control systems in
such water utilities have been documented for decades [3]:10

high operating costs, system complexity, rising demand,
need to capitalize on staff experience, etc. The conjugated
growth of electricity prices and environmental awareness
has spurred new interest in the optimal control problem,
also known as the Pump Scheduling Problem, because of15

its ability to address energy efficiency mechanisms such
as demand-response [4, 5]. Because they are energy in-
tensive and thanks to their buffering abilities, drinking
water distribution networks are indeed remarkable instru-
ments for implementing demand-response programs via20

load-shifting: by storing water and energy in elevated tanks,
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demand can be anticipated by pumping the adequate amount
of water when electricity is cheapest. Hence, given re-
liable water consumption forecasts and dynamic electric-
ity prices, significant energy and financial savings can be25

achieved by shifting the pump operations to off-peak [5, 6].
Due to the problem’s complexity, which is even greater

when prices are highly dynamic, only automatized control
programs have the computational capacity to determine a
least-cost pump schedule in a general real-size utility. This30

issue has given rise to abundant literature on sophisticated
heuristic algorithms (see e.g. the surveys in [3, 7, 8, 9, 5]).
However, many small to medium-sized water supply sys-
tems, such as the French rural distribution network we
examine in this paper, still rely on human operators to35

manage pumps in near-real time and expect them to do
so in a cost-effective way [10]. One probable reason is
that these practical solutions, including commercial prod-
ucts [11, 12, 13], require a minimum of algorithmic devel-
opment and expertise to be replicated. Furthermore, these40

heuristics do not guarantee optimality and, thus, cannot
be used to assess the maximum potential financial benefit.

By focusing on a specific, still widespread, class of net-
works, we show in this paper that a pure model-based ap-
proach is possible to tackle real applications, with several45

practical advantages. First, this approach is easy to repli-
cate on any network in the class, since only the mathemat-
ical model’s input data need to be changed; the resulting
model can then be handled by any certified mathematical
programming solver. This feature is convenient for net-50
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work operators who wish to quickly prototype the optimal
control of their utilities to estimate the benefit. Second,
the model is tractable and can be quickly solved. Our con-
trol approach can then even be considered to operate in
near real-time. Third, the approach is exact, i.e. it can55

guarantee the maximum possible financial benefit. Finally,
since it is robust to highly-dynamic electricity prices, it is
suitable for implementing demand-response.

The networks considered in this paper have the follow-
ing characteristics: (1) a branched layout (i.e. no loop, no60

bi-directional pipes), (2) several pumps collocated in one
pumping station at the source node, and (3) elevated tanks
equipped with flow-control valves at the destination nodes.
While such a topology can be encountered in industrial us-
ages or in irrigation systems [14], it is particularly common65

in rural drinking water distribution networks [1]: in the
upstream pumping network, water is treated and pumped
near the source to be raised and dispatched to water tow-
ers where valves compensate for the elevation differences.
The downstream gravity-fed network – from the towers to70

the consumers – is independent since the pressures in both
networks are not correlated. To our knowledge, this class
of networks has not been specifically investigated in prior
studies. Notably, benchmark problems and real applica-
tions in literature tend to concern urban networks with75

looped configurations.
Our approach is based on a traditional formulation of

the pump scheduling problem as a Mixed-Integer Non-
Linear program (MINLP). This non-convex model has not
been solved in reasonable time in general cases even involv-80

ing small networks [15]. We thus consider a tractable re-
laxation by dropping non-convexities, precisely, the strict
equality in the potential-flow coupling constraints. For
the considered class of networks, we show how to convert
a solution of this relaxation into a feasible solution with a85

limited cost increase. The increase is even null (i.e. the
solution remains optimal) when the characteristic power
functions of the pumps share the same slope.

The study was conducted by an industrial application
on the FRD network, a medium-sized drinking water dis-90

tribution system (6 pumps, 16 tanks, 49 nodes, 53 arcs)
located in a rural zone of France and supplying about 3
million m3 of water per year. Experiments on one year of
historical data show the practical benefits of the approach
compared to the in-house strategy currently employed in95

the utility: pumping plans for the day-ahead are generated
in less than one minute and their feasibility is assessed on
the EPANET simulator. On average, over one year, their
cost is guaranteed to be less than 3% of the optimum, and
they are 17% cheaper than the plans generated heuristi-100

cally by the current strategy. In addition, the daily plans
involve lower discharge pressures (22% lower on average)
and thus fewer leakages. Incidentally, they operate the
pumps with a 10% lower mean efficiency, which indicates
that the current design of the station is sub-optimal. Fi-105

nally, the current strategy is driven by night/day electric-
ity tariffs and is not compatible with an intra-day price

variability, unlike our approach.
The paper is organized as follows: Section 2 provides

a selected review of literature on the Pump Scheduling110

Problem. Section 3 presents the traditional MINLP for-
mulation and Section 4 the convex relaxation for the con-
sidered class of networks. Section 5 provides an extended
empirical analysis on the FRD network. Section 6 gives
conclusions and perspectives.115

2. Literature review

Pump Scheduling involves planning the pumping op-
erations over a future period, typically the day ahead,
in order to minimize energy costs, considering the static
physical characteristics of the network elements (pipes,120

pumps, valves, tanks) and forecasts of the electricity price
and water demand. An accurate mathematical model for
this problem is hard to optimize as it involves both non-
linearities (the potential-flow relations) and combinatorial
aspects (i.e. when active elements, pumps and valves can125

be switched on/off) [15, 16].
This problem has been the focus of significant atten-

tion over the last 40 years. Several survey papers [3, 7, 9]
have reviewed the state-of-the-art. Altogether, they cite
more than 80 references that we summarize here: earlier130

works mostly applied dynamic programming or continu-
ous linear/non-linear programming techniques, often com-
bined with hydraulic simulators, to handle the complex
physics out of the optimization models. These time-con-
suming methods either consider basic networks (one pump,135

one tank) or oversimplify the problem.
Later on, many metaheuristic procedures were devel-

oped, including a number of evolutionary algorithms re-
viewed in the comprehensive survey [8] and, recently, less
traditional procedures such as particle swarms [16] or mat-140

heuristics, i.e. mathematical programming-based heuris-
tics [17]. Several works report good results on medium-size
benchmark instances or industrial applications: they are
computationally efficient and can handle complex facets
of the problem (e.g. multiple objectives [18] or side con-145

straints). On balance, they do not guarantee global opti-
mality and require sophisticated algorithm developments.

To tackle these drawbacks, model-based approaches
rely on mathematical formulations to be solved using any
suitable general-purpose solvers. Recent advances in Mixed-150

Integer Non-Linear Program (MINLP) solvers have re-
newed the interest in these approaches, as reported in a
very recent survey [15]. However, the global (even local)
solvers that are currently available do not yet scale up
on the hard MINLP formulation of the pump scheduling155

problem. Hence, the approaches based on mathematical
programming in current literature rely on relaxed mod-
els. Three kinds of relaxations are considered: the dis-
crete decision components are ignored [19, 20]; the non-
convexities are approximated using piecewise linear func-160

tions [21, 22, 23, 24]; or the time-coupling constraints are
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dropped [25]. The resulting programs (a continuous non-
convex program, a mixed integer linear program, or several
small independent MINLPs) are more tractable, although
they remain NP-hard. A trade-off is thus required between165

the strength of the approximation (e.g. the number of seg-
ments in the piecewise linear fit) and the expected com-
putation time. Furthermore, these approaches rely on a
heuristic algorithm to recover the feasibility of the relaxed
solutions in a second phase. As a direct evolution of relax-170

ation techniques, two recent works apply decomposition
techniques (lagrangian relaxation [5] and Benders decom-
position [26]): to get an optimal solution, the relaxation
is solved iteratively driven by a master program. Again,
as the convergence is too slow, the method is truncated175

and coupled with Local Search [5]. Hence, the mathemat-
ical programming-based approaches that were published
for the Pump Scheduling Problem are not pure model-
based approaches: they are generic and some are applica-
ble to large networks, but they generally do not provide180

optimality proofs, many are time-consuming, and all re-
quire more or less experimented skills to be implemented
properly. In comparison, we focus in this article on a less
general (yet widespread) class of networks but, precisely,
we show how to exploit these specificities to derive a fast185

exact replicable pure model-based approach.

3. MINLP for Pump Scheduling

The Mixed-Integer NonLinear Programs designed for
the general Pump Scheduling Problem [19, 25, 15, 5] share
the same structure. For the class of networks considered190

in this article, this formulation can be slightly simplified.
This section first details the topology of the considered
class of networks, then the traditional MINLP formulation
adapted to this class.

Figure 1: FRD network : a pumping station operating 2 small and
4 large pumps in parallel and supplying 16 water towers equipped
with flow control valves.

3.1. Notation and variables195

In the considered class of water networks, illustrated
by Figure 1, a pumping station is connected to a pipe net-
work in which water is transported to the elevated water

tanks. These can naturally be represented by a multi-arc
K connected to an arborescence, i.e. a directed rooted200

tree, (J, L):

• each arc k ∈ K models one pump and links the inlet
reservoir node r to the outlet station node s;

• the set J of nodes in the arborescence includes the
station node s (the root), the tanks JT (the leaf205

nodes), and the pipe junctions JJ (the internal nodes);

• the set L of directed arcs consists of the pipes LP and
the flow control valves LV . In our context, there
is exactly one valve before each tank. In the ar-
borescence (J, L), the valves are then represented by210

the terminal arcs to the leaves (from a junction to
a tank), while the pipes are represented by the in-
ternal arcs (from the station node or between two
junctions).

The planning horizon is one day divided into T = 24215

hourly periods.
The mathematical model involves two sets of decision

variables: the activity indicator xkt ∈ {0, 1} of pump k ∈
K (i.e. xkt = 1 if k is on at time t, xkt = 0 otherwise)
and the flow rate qlt ≥ 0 (in m3/h) passing in a directed220

link l ∈ L or pump l ∈ K in time period t ∈ [1, T ]. Since
each time period t lasts 1 hour, qlt is also the volume (in
m3) of water flowing through element l during period t.
The model also involves one set of implied variables: the
hydraulic head (or node potential) hjt ≥ 0 (in m) at node225

j ∈ J in time period t ∈ [1, T ]. This is conventionally
measured as the sum of the geographical elevation and the
water pressure head at the node.

J nodes L arcs
r reservoir node K pumps
s ∈ J station node LP ⊂ L pipes
JT ⊂ J tank nodes LV ⊂ L valves
JJ ⊂ J internal nodes t ∈ [1, T ] time periods

xkt ∈ {0, 1} activity indicator of pump k ∈ K in period t
qlt ≥ 0 flow/volume through l ∈ L ∪K in period t
hjt ≥ 0 hydraulic head at node j ∈ J in period t

Table 1: Summary of notation

3.2. Potential-flow coupling

The physical behavior of a pump or a pipe is accurately230

modeled by a real function of the instantaneous flow rate
passing through it:

Pipes. Darcy-Weisbach is the preferred law to describe the
pressure loss along a pipe ij ∈ LP (as a function Φij
of the flow q) in water networks [27]. This equation re-
lies on a coefficient, the friction factor, which is itself an
implicit function of the flow [21]. To obtain a tractable
expression within a mathematical model, this coefficient
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is generally approximated using the Prandtl-Kármán for-
mula for fully turbulent flows (with a Reynolds number
Re greater than 106) as in [23, 25] or using the Swamee-
Jain formula for turbulent flows (Re > 4000) as in the
modeling software EPANET [28]. To keep our model both
accurate and tractable, and to make it compatible with
EPANET for checking the feasibility of the solutions, we
follow Eck et al. [27] and approximate the latter expression
as a quadratic function

Φij(q) = Aijq +Bijq
2

over range 4000 ≤ Re ≤ 105 using a least squared regres-
sion method.

Pumps. The characteristics of a fixed speed pump k ∈ L235

are given by the manufacturer as a set of experimental
points that we propose to interpolate as depicted in Fig-
ure 2.

Figure 2: Pressure discharge (left, in m), efficiency (middle, in %),
and power consumption (right, in kW ) of the two classes of pumps
available at the FRD pumping station: experimental observations
(in black) and fitted curves (in orange).

For the two considered classes of pumps, the pressure dis-
charge can accurately be approximated by a quadratic
function (as in [15]) of the flow:

Ψk(q) = Ak −Bkq2.

Rather than expressing the power consumption as a func-
tion of pressure, flow and efficiency, we adopt a linear ap-
proximation:

Γk(x, q) = P 0
kx+ Pkq,

where q is the flow rate through the pump and x the activ-
ity indicator of the pump. Note that, by definition1, the240

flow through a pump is null (qkt = 0) if and only if the
pump is inactive (xkt = 0). The contribution to the cost
is then null (Γk(xkt, qkt) = 0) when pump k is inactive at
time t. Such a linear fit has been considered in previous

1this definition is enforced by Constraints (7) in our model.

works (e.g., [21, 23, 20]). In our case, it provides a very245

good approximation as illustrated by the graphs on the
right of Figure 2.

Finally, the pump efficiency is the ratio between the hy-
draulic power ρgqΨk(q) (where ρ = 1000 kg/m3 the water
density and g = 9.81 m/s2 the gravitational acceleration)250

and the power consumed. Again, this quantity denoted
ηk(q) is well defined by a quadratic function (as in [23]).

3.3. Mathematical model

Given the notation summarized in Table 1, the Pump
Scheduling Problem can be formulated as follows:

z = min
∑
t∈T

∑
k∈K

CtΓk(xkt, qkt) (1)

s.t.
∑

ij∈L∪K
qijt =

∑
ji∈L

qjit, ∀t, j ∈ {s} ∪ JJ (2)

∑
ij∈L

qijt = Sj(hjt − hj(t−1)) +Djt, ∀t, j ∈ JT (3)

hj0 = H0
j , ∀j ∈ JT (4)

Hmin
j ≤ hjt ≤ Hmax

j , ∀t, j ∈ JT (5)

hit − hjt ≥ 0, ∀t, ij ∈ LV (6)

Qmin
k xkt ≤ qkt ≤ Qmax

k xkt, ∀t, k ∈ K (7)

(hst − hrt −Ψk(qkt))xkt = 0, ∀t, k ∈ K (8)

hit − hjt = Φij(qijt), ∀t, ij ∈ LP (9)

Objective (1) minimizes the total energy cost of pumping
where Ct denotes the electricity tariff (in e/kWh). Flow255

conservation is ensured by Constraints (2) at the station
node s and at each junction j ∈ JJ , and by Constraints (3)
at each tank j ∈ JT . In Constraints (3), Djt denotes the
demand (in m3) in time period t ∈ [1, T ] and Sj the cross-
section (in m2) of the cylindrical tank: as the water in the260

tank is at atmospheric pressure [19], the hydraulic head hjt
represents the elevation head of the filling level, i.e. the
elevation of the tank plus the volume of water divided by
Sj . The volume of water in a tank, and thus the hydraulic
head, are bounded at any time (5) and fixed at time 0 (4).265

Constraints (6), (8) and (9) model the potential difference
along, respectively, valves (as in [20]), pumps and pipes.
Finally, Constraints (7) and (8) model the activity of the
pumps: Constraints (7) enforce the flow to be null when
the pump is inactive, and within some positive interval270

[Qmink , Qmaxk ] otherwise. Constraints (8) enforce a fixed
potential difference between the station inlet r and outlet
s only if at least one pump is active. If all pumps are off
(xkt = 0,∀k ∈ K), the hydraulic heads at nodes r and s
are left unrelated.275

4. Towards a tractable model

Due to its non-convexities, model (1-9) above is likely
hard to resolve at optimality. We show in this section how
to exploit the specificities of the considered class of net-
works to turn this model into a tractable convex MINLP.280
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4.1. One-direction flow

Compared to the general formulation, the MINLP above
presents a first simplification that is valid for any branched
networks: pipes and valves allow for flows in only one di-
rection. In the general case, either the flow variables qijt285

on pipes are not restricted in sign (as in [25]), leading to
nonsmooth and nonconvex constraints (9), or the pipes are
duplicated (qijt ≥ 0, qjit ≥ 0) in the model and linked by
additional binary variables (with xijt +xjit ≤ 1) to model
the flow direction (as in [27]). For valves, equivalently, ei-290

ther a nonconvex constraint [19] or an additional binary
variable [25] is required in place of a linear constraint (6) to
ensure that the valve pressure decrease is consistent with
the direction of the flow.

4.2. Symmetric pumps295

A pumping station commonly contains pumps with
similar characteristics and ages. The set K of pumps can
then be partitioned into classes C(K). Since all of the ac-
tive pumps in a class work on the same operating point
according to (8), these pumps can be aggregated in the
model. One way of doing this [20] is to model the number
of active pumps as an integer variable instead of the binary
activity status xkt of each individual pump. This reduces
the number of head-flow constraints (8) to only one per
pump class. An alternative [25] is to order the pumps
in a class arbitrarily and enforce the following symmetry
breaking constraints:

x(k+1)t ≤ xkt, ∀t, C ∈ C(K), k, k + 1 ∈ C (10)

The benefits of aggregation or symmetry breaking are twofold.
First, it helps the computation of the MINLP by reducing
both its size and the size of its search space (from 2|K| to∑
C∈C(K) |C| + 1); note that in our experiments, the two

approaches resulted in similar improvements. Second, it300

decomposes the operational problem into two steps: the
MINLP determines how many pumps per class to acti-
vate, while the operators of the pumping station deter-
mine which physical pumps to select. Based on their prac-
tical knowledge of the network elements, they can more305

naturally and efficiently enforce operational constraints
and preferences regarding pump lifetimes and maintenance
needs. For example, they can balance the activity across
the pumps in order to limit the number of switches and
the inactivity period of each pump per day.310

4.3. Convex potential-flow coupling constraints

As suggested by Gleixner et al. [25], if a pipe ij ∈ LP
and a pressure-reducing valve l ∈ LV are connected with
zero demand at junction j ∈ J , then the pressure loss
equation (9) for pipe ij can be relaxed into a lower bound:

hit − hjt ≥ Φij(qijt), ∀t, ij ∈ LP (9’)

Indeed, the valve can dissipate any extra amount hit −
Φij(qijt)− hjt ≥ 0 of pressure at junction j.

In our case, a valve precedes each water tower and no
water demand occurs at junctions. This allows us to relax315

the equality in all constraints (9) because on each path
connecting the pumping station to a water tower, the flow
ultimately goes through a valve. The valve then compen-
sates for the artificial higher pressure losses along the path.

For the same reason, we propose to relax the potential-
flow coupling equations (8) for pumps as

(hst − hrt −Ψk(qkt))xkt ≤ 0, ∀t, k ∈ K (8’)

to allow an artificial lower pressure hst at the station out-320

let s. Again, we assume that the valves will dissipate the
actual higher pressures at the junctions, when the operat-
ing point of each pump k is pushed up on the head-flow
curve Ψk.

The following two propositions show that the relaxed325

MINLP (P ′) : (1 − 7, 8′, 9′) is equivalent to the original
MINLP (P) : (1− 7, 8, 9) on the condition that the slopes
of the power functions of the pumps are all equal. More
precisely, and of practical interest, we show how to build
a feasible solution for the original problem (P) given a re-330

laxed solution of (P ′) by balancing the flow through the
pumps (to push up the operating point of the pumps on
their respective head-flow curves) and increasing the pres-
sure progressively from the station to the dissipating valves
(to propagate the actual lower pressure losses).335

In Proposition 1, we consider the case in which all
pumps are identical. We prove that both solutions cost the
same: the derived solution is then optimal for (P) if the re-
laxed solution is optimal for (P ′). Proposition 2 addresses
the general case in which pumps of different classes can340

be active at the same time. The cost of the two solutions
may then differ by a factor of maxk∈K Pk −mink∈K Pk in
the worst case, where Pk is the slope of the power function
Γk of each pump k. The conversion leads thus to the opti-
mum of (P) if the relaxed solution is optimal for (P ′) and345

if all slopes Pk are identical. Otherwise, the derived solu-
tion may not be optimal for (P) but the optimum of (P ′)
provides a lower bound for (P) and thus an estimation of
the optimal gap of the derived solution.

Proposition 1. Assume all pumps in K are identical and350

let denote Ψk = Ψ and Γk = Γ for all pumps k ∈ K.
For each solution (x, q′, h′) feasible for the relaxed program
(P ′), there exists a solution (x, q, h) feasible for the origi-
nal program (P) and at same cost.

Proof: We build a solution (x, q, h) that coincides with355

(x, q′, h′) with the possible exception of the values of the
hydraulic pressures hjt at the junctions j ∈ {s} ∪ JJ and
the values of the flows qkt through the active pumps k ∈ K.

First, the flow is evenly spread between the active pumps
at each time step t ∈ T according to: qkt = q′t for all k ∈ K360

such that xkt = 1 with q′t =
∑

k∈K q′kt∑
k∈K xkt

. The pressure at the

station outlet is set to hst = Ψ(q′t) (using r as the reference
point, we assume hrt = 0 w.l.o.g.). Since Ψ is concave,

then hst ≥
∑

k∈K Ψ(q′kt)∑
k∈K xkt

≥ mink∈K|xk=1 Ψ(q′kt) ≥ h′st.
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Pressures at junctions j ∈ JJ are then computed for365

each time step t ∈ T recursively along the paths from
station s by: hjt = hit − Φ(qijt) with qijt = q′ijt for all
ij ∈ LP . By induction from s, we prove that hjt ≥ h′jt
for all j ∈ {s} ∪ JJ : assuming hit ≥ h′it for some pipe
ij ∈ Lp, then hjt ≥ h′it − Φ(qijt) ≥ h′jt. As a conse-370

quence, (x, q, h) satisfies constraints (6) for all water tow-
ers j ∈ JT , valves ij ∈ LV and time steps t ∈ T since
hit − hjt = hit − h′jt ≥ h′it − h′jt ≥ 0. All other con-
straints of (P) are also satisfied by construction of (x, q, h).
Finally, since Γ is linear, both solutions cost the same:375

z =
∑
t∈T

∑
k∈K CtΓ(qkt) =

∑
t∈T

∑
k∈K CtΓ(q′kt) = z′.

�

Proposition 2. For each solution (x, q′, h′) feasible for
the relaxed program (P ′), there exists a solution (x, q, h)
feasible for the original program (P) such that the cost dif-380

ference is bounded from above by a factor of (maxk∈K Pk−
mink∈K Pk).

Proof: The derived solution (x, q, h) is built as in Proposi-
tion 1 except for the distribution of the total flow through
the pumps at each time step t.385

The flow conveyed by the active pumps of a given
class C ∈ C(K) can be evenly balanced as above. Let
nCt =

∑
k∈C xkt be the number of active pumps in class C

and q′Ct =
∑

k∈C q
′
kt

nCt
be the flow through each active pump

of C if evenly balanced, then the total flow at time t is390 ∑
C∈C(K) nCtq

′
Ct.

The flow must now be balanced among the pump classes
such that ΨC(qCt) = ΨC′(qC′t) for all classes C, C′ ∈ C(K),
and such that total flow is conserved, i.e.

∑
C∈C(K) nCt(qCt−

q′Ct) = 0. This system of |C(K)| equations and variables395

qCt admits exactly one solution as the pressure discharge
functions ΨC are bijective on the half-plane q ≥ 0.

Let hst = ΨC(qCt) for any c ∈ C(K). The proof of
Proposition 1 applies to establish the feasibility of solution
(x, q, h) if we prove that hst ≥ h′st: Since

∑
C∈C(K) nCt(qCt−400

q′Ct) = 0, there is at least one class C ∈ C(K) such that
qCt ≤ q′Ct. Given (8’) and that ΨC is both concave and
decreasing, then hst = ΨC(qCt) ≥ ΨC(q

′
Ct) ≥ h′st.

Finally, the cost difference at time t between the two
solutions is ∆Ct =

∑
C∈C(K) CtnCtPC(qCt − q′Ct). Let the405

set of classes C ∈ C(K) be divided in C(K)+ and C(K)−

depending respectively on whether the flow is increased
(qCt ≥ q′Ct) or decreased (qCt < q′Ct), and let P+ and
P− be respectively the highest and lowest slope of power
functions among the classes C ∈ C(K). Then, ∆Ct ≤410

CtP
+
∑
C∈C(K)+ nCt(qCt−q′Ct)+CtP

−∑
C∈C(K)− nCt(qCt−

q′Ct) = Ct(P
+ − P−)

∑
C∈C(K)+ nCt(qCt − q′Ct). The total

cost difference is thus bounded from above by a factor of
(P+ − P−). �

Finally, the potential-flow coupling equations (8’) can
be reformulated as quadratic inequalities with the help of
big-M values:

hst− hrt ≤ Ψk(qkt) +M(1− xkt), ∀t, k ∈ K (8”)

By choosing a sufficiently large value for M (we use M =415

maxk∈K Ak − mink∈K Ak), this constraint enforces hst −
hrt ≤ Ψk(qkt) when pump k is active (xkt = 1) and leaves
hst and hrt unrelated otherwise.

The resulting model (P ′′) : (1 − 7, 8′′, 9′, 10) belongs
to the class of convex Mixed Integer Quadratically Con-420

strained Programs (MIQCP), and thus has in practice
a lower computational complexity than (P). Indeed, it
can be handled by efficient solution algorithms capable
of reaching global optimality, such as the sophisticated
Branch-and-Bound and Outer Approximation algorithms425

available in numerous general-purpose solvers. Further-
more, in order to derive a feasible solution for (P) with a
performance guarantee, (P ′′) does not need to be solved
to optimality, but only to provide at least one feasible so-
lution and a lower bound. In the experiments we present430

below, we run the solver for a limited amount of time,
enough to compute this information.

5. Application to the case study

5.1. Study case and experimental set

In this section, we present the results of our experi-435

ments conducted on the medium-size network FRD de-
picted in Figure 1: 16 water towers with valves are con-
nected by 31 pipes to a single pumping station equipped
with 4 pumps of class KSB150 and 2 pumps of class KSB100
(the pump characteristics are depicted in Figure 2).440

FRD is a real drinking water supply system located in
a rural zone of France. It serves an area of about 350km2

with a marked topography: the source is at elevation of
+40m while the highest reservoir is at +131m. The sys-
tem annually supplies about 3 million m3 of water, with445

twice as much in summer compared to winter. Currently
the pumping station is operated by an in-house heuristic
solution (this common strategy [10] is described in sec-
tion 5.3.1), with an annual consumption of about 1.3GWh.
We have access to one year of historical data on the aggre-450

gated water demand of the end-consumers at each water
tower. Data consist of measurements 10 or 15 minutes
apart that we average out into a 1-hour step. The electric-
ity tariff scheme we consider is the green tariff A5 Base
Very Long Uses provided by the French utility company455

EDF [29]. This day/night pricing has two different tar-
iffs for summer (April to October) and winter (November
to March). Furthermore, a peak tariff applies during four
hours a day (two in the morning and two in the evening)
from December to February, and night pricing applies all460

day Sunday.
We empirically evaluated our approach on 365 differ-

ent instances, each corresponding to a day of the historical
data. The water demands – and thus the instances – are
highly contrasted depending on the season; in particular,465

demand increases significantly during the summer tourist
season. A ’day’ starts and ends at 22h, which marks the
beginning of the night pricing, and the water tower vol-
umes are set to their minimum level at the beginning of
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the day. Indeed, to minimize the total energy cost in prac-470

tice, the water towers are emptied at the end of the day
and filled at the beginning of the next day, i.e. during the
night pricing period.

The solution approach is as follows: as explained in
Section 3, curves ΓC and ΨC for the two classes of pumps475

are fitted from the series of operating points provided by
the constructor and the pressure loss function Φp is ap-
proximated using a quadratic function. Model (P ′′) is
then built with the Gurobi Python API and solved by the
default MIQCP solver of Gurobi v5.6.3 using 8 threads480

of a quad-core processor 8GB RAM Intel Core i7 CPU
3720 @ 2.66 GHz running Windows 7 (64 bits). Note that
this solver is also freely available on the NEOS server [30]
through different interfaces. We allot 60 seconds to the
computation time after which the solver returns the best485

lower bound and the best solution found. The solution is
then converted into a feasible solution to the original prob-
lem (P) according to the construction of Proposition 2.
Note that, with only two different classes of pumps, the
redistribution of the flows qCt through the pump classes490

can be easily computed by analytically solving the system
of two quadratic equations.

5.2. Validating the approach

The experiments were conducted on the 365 instances,
but to investigate the results more in depth, we exhibited495

two representative days: a winter day and a summer day.
To validate our approach on our case study, we answered
the following questions:

May the approach compute good solutions in short times ?
For all 365 instances, Gurobi found a lower bound and at500

least one feasible solution for the convex relaxation (P ′′)
in less than 1 minute. The process to convert the best
relaxed solution computed in 1 minute into a feasible so-
lution for (P) is immediate. We estimated for each day
d = 1, . . . , 365 the gap Gd between the cost of the con-505

verted solution and the lower bound of (P ′′) as a ratio of
the lower bound. The mean gap 1

365

∑
dGd and the max-

imal gap maxdGd are respectively 3.0% and 8.2%. The
gap includes the surplus cost arising from the conversion
of the solution to (P ′′) into a feasible solution to (P). This510

conversion cost represents only 0.17% of the overall gap:
this is less than e0.01 per day on average.

Is the convex relaxation required ? We directly solved the
non-convex formulation (P) with the symmetry breaking
constraints (10) under nine state-of-the art MINLP solvers515

available on the NEOS server [30]. Three solvers (Dicopt,
Lindo Global, SBB) were unable to process the model be-
cause of its size. Four solvers (Bonmin, Couenne, Scip,
Knitro) were unable to compute any feasible solution in
less than 2 hours. The two global solvers AlphaECP and520

Baron computed good solutions in reasonable time for
some instances but not for all. Figure 3 illustrates the
behavior of these solvers compared to our approach on the

Figure 3: Comparison of the solutions (quality and computation
time) found by MINLP solvers (AlphaECP, Baron, Scip) and by
our approach (Gurobi) on the winter (top) and summer (bottom)
representative days. LB denotes the value of the best lower bound
computed by our approach.

typical winter day (top) and summer day (bottom). On
the easier (winter) instance, our approach found the best525

solution in 2 seconds, at 2% from the best lower bound
LB computed by our approach. AlphaECP was also able
to compute instantly a solution, but of inferior quality at
9% from LB. The solution did not improve before 30 sec-
onds and met our best solution after more than 1 hour.530

Note that Baron and Scip computed good first solutions
but, respectively in 10 minutes and 5 hours. On the hard
(summer) instance, none of the non-convex solvers were
able to compute at least one solution in less than 5 min-
utes. The best solutions found after 2 hours by AlphaECP535

and Baron were respectively at 39% and 20% from LB.
Our approach found its best solution at 7% from LB in
less than 20 seconds. These experiments show that a di-
rect non-convex solution approach is not practicable in this
application case.540

Is the approach robust to increasing demands ? We now
detail our approach behavior on the two representative
days. On the winter day dW , the overall water demand is
low (6110 m3). For this instance and 229 similar others,
only the two smallest pumps are activated in the computed545

solution. The solution for dW is depicted in Figure 4b. Its
optimality gap is GdW = 2%. According to Proposition 1,
the conversion cost from (P ′′) and (P) is zero.

On the typical summer day dS , the water demand is
doubled (13505 m3). For this instance and 134 others, the550

largest pumps are also activated, supplying about 20% of
the total flow. We observe that the solution optimality
gap is greater when the daily flow is higher: for the day
under study, the gap is GdS = 7%. The conversion cost
is negligible (e0.002) for two reasons. On the one hand,555

the slopes of the power functions of the small and large
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pumps are close. On the other hand, the largest pumps
are active only on few time steps. For 51 of the 135 summer
instances, the conversion cost is even zero because, at time
steps where flows need to be rebalanced, the active pumps560

are all of the same class.

Are the computed solutions physically viable ? We tested
the solutions with EPANET. To match the hypothesis of
this simulator, we made two slight changes to our model.
First, we enforced the pressure loss functions to overesti-
mate the pipe losses, i.e. we computed Aij and Bij with
the constraint that Ψij(q) is greater than the theoretical
pipe losses for the range of possible flow values. Secondly,
we replaced constraints (6) on valves with

hit − hjt ≥ QMax
ij /Sj , ∀t, ij ∈ LV (6’)

given QMax
ij an upper bound on inflows. This forces the

water tower head to increase when inflows exceed demand.
With these two modifications, we observed that our so-
lutions are fully compatible with EPANET for both the565

winter day and the summer day.

5.3. Evaluating the gains achieved

In this section, we estimate the annual expected ben-
efits arising from optimizing the pump schedule. To this
end, we simulated the strategy currently implemented in570

the FRD network. Variants of this strategy are common
in water utilities [10].

5.3.1. Current strategy

In practice, the operators manage the network by open-
ing and closing gate valves at the water towers. Addition-575

ally, flow control valves fix the amount of water entering
each tower. This amount results from the trade-off be-
tween securing the water supply and restricting pressure
losses; it is only modified twice a year to correspond to sea-
sonal demand. At each valve status change, if the induced580

discharge pressure decreases or increases sufficiently, the
operators select pumps to switch on/off. In our simula-
tion, the time is discretized into 15-minute periods, and
the combination of pumps to activate in a given period is
selected so as to satisfy the required total flow and mini-585

mize power consumption.
The operators decide to open or close a valve at a given

time when the current volume of the water tower reaches
thresholds: the valve is open (resp. closed) if the volume is
within or passes beyond the lower (resp. upper) threshold590

and remains open (resp. closed) until it reaches the up-
per (resp. lower) threshold. To compute these thresholds,
the operators take into account the electricity tariff and,
very approximately, the future demand: the range allowed
between the thresholds has been estimated through prac-595

tice to avoid over-frequent changes in valve status, and the
threshold levels depend on the tariff period. Precisely, at
night, the upper threshold is set to the physical capacity
of the tower and the lower threshold is set slightly below

this value in order to provoke pumping at the lowest tariff600

and store for the day ahead. Conversely, during the day,
the lower threshold is set at the minimum water volume
required in case of emergency and the upper threshold is
set slightly above this value in order to limit pumping at
the highest tariff.605

5.3.2. Estimated benefits

To estimate and explain the energy cost savings, we
consider the alternative formula of the cost as a function
of the flow, pressure and efficiency2, denoted as zd for a
day d = 1, . . . , 365 :

zd =
∑
t∈T

∑
k∈K

qktdρgΨk(qktd)

ηk(qktd)
Ctd

=

∑
t∈T Ctd

∑
k∈K

qktdΨk(qktd)
ηk(qktd)∑

t∈T
∑
k∈K

qktdΨk(qktd)
ηk(qktd)︸ ︷︷ ︸

Cd

∑
t∈T

∑
k∈K

qktdΨk(qktd)
ηk(qktd)∑

t∈T
∑
k∈K qktdΨk(qktd)︸ ︷︷ ︸

η−1
d

× ρg
∑
t∈T

∑
k∈K qktdΨk(qktd)∑

t∈T
∑
k∈K qktd︸ ︷︷ ︸

Ψd

∑
t∈T

∑
k∈K

qktd︸ ︷︷ ︸
Qd

We then investigated the three factors of cost: the mean
discharge pressure Ψd needed in order to supply the water
demand, the mean efficiency ηd of the pumping station,
and the mean cost Cd of the electricity consumed. Table 2610

summarizes the values obtained by our approach (denoted
MINLP) compared to the simulated current strategy (de-
noted BAU ) aggregated on the annual scale, while Fig-
ures 4a and 4b illustrate them on the typical winter day.

BAU MINLP ∆M/B

power cost
∑

d zd (ke) 58.7 48.8 -16.9%

power consumption
∑

d ΨdQdη
−1
d (GWh) 1.335 1.157 -13.3%

mean discharge pressure 1
365

∑
d ψd (m) 133.1 103.9 -21.9%

mean pump efficiency 1
365

∑
d ηd 74.2% 67.2% -9.6%

mean power cost 1
365

∑
d Cd (e/MWh) 45.0 43.1 -4.2%

night/total power consumption (%) 46.1% 54.1% +17.4%
day/total power consumption (%) 51.0% 45.8% -10.2%
peak/total power consumption (%) 2.9% 0.1% -96.6%

Table 2: Annual energy cost and consumption: comparison between
the simulated strategy (BAU ) and our approach (MINLP). The de-
viation ∆M/B is computed as (MINLP-BAU )/BAU.

615

Thus, the significant 16.9% savings on the annual en-
ergy bill resulting from MINLP compared to BAU can be
explained by at least one of these factors: better align-
ment with the power prices or lower power consumption –
itself induced by lower discharge pressure or better pump620

efficiency.

2Assessed over the 365 instances, the cost difference between this
formulation and the linear expression used as the objective (1) of the
MINLP is around 3%.
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(a) BAU day/night (b) MINLP day/night (c) MINLP spot

Figure 4: Comparison between the simulated strategy (BAU) and the optimized (MINLP) schedules on a winter day instance for two electricity
tariffs (day/night and dynamic price). Top to bottom: in red, the schedule of the flow through the large (top four) and small (bottom two)
pumps, the discharge pressure at node s, the electricity tariff.

Mean power cost. The alignment with the simple day/night
tariff is comparable for the two strategies with an advan-
tage for MINLP : the share of electricity consumed dur-
ing the night is 17.4% greater for MINLP than for BAU625

and the share for the 4 hour-peak period is 96.6% lower.
The mean cost of electricity decreases from e45.0/kWh for
BAU to e43.1/kWh for MINLP . The price information is
actually a key element of the scheduling decisions in both
strategies, including in BAU where the fixed thresholds630

force the water towers to stay at their higher level during
the night and at their lower level during the day.

Mean discharge pressure. MINLP provides a substantial
reduction (13.3%) in annual energy consumption, driven
by a 21.9% decrease in the mean discharge pressure. This635

lower pressure is clearly visible for the sample day depicted
in Figures 4a and 4b (see green diagrams): the discharge
pressure in BAU is frequently well above 110m which is
the maximum pressure generated in MINLP. The reason
for this is twofold. First, MINLP fills the water towers640

rationally over the time horizon, while BAU enforces a
rapid fill of the towers at some time steps, involving larger
instantaneous flows and more pressure losses in the pipes.
In the illustrated example (see red diagrams), we observe
that the filling of the water towers is well distributed over645

the off-peak period in MINLP , while in BAU , three large
pumps send out a significant share of the water required
during the first hour. Secondly, due to the binary sta-
tus of the gate valves and the fixed amount of flow pass-

ing through them, at any time BAU must select one set650

of possible flow configurations from a finite number. Al-
though the valves and pumps were jointly designed to fit
the expected hydraulic conditions, any selected configura-
tion of the valves may imply a substantial increase of the
discharge pressure in order to reach the head-flow curves of655

the pumps. This can be observed on Figure 4a at 8:15am:
although the flow is unlikely to substantially increase the
discharge pressure (the flow is less than 100 m3/h and
serves a water tower located in a low-altitude region), the
discharge pressure has to be raised to 140 meters in order660

to intersect the head-flow curve of pump KSB100-1.
As an aside, the pressure decrease provided by MINLP

also limits water leakages in the network. Indeed, water
leakages are commonly modeled by an additional pressure-
dependent demand at nodes [27, 31] and the frequency665

of pipe bursts also depends on the pressure [32]. Hence,
minimizing the energy costs indirectly leads to positive
externalities concerning leakages and maintenance costs.

Mean pump efficiency. The last factor we studied was the
pump efficiency. We observed that the annual mean ef-670

ficiency was reduced from 74.2% in BAU to 67.2% in
MINLP . Figure 5 illustrates this gap on the winter day,
by comparing the occurrence of the pump operating points
of BAU (blue) and MINLP (yellow): MINLP chooses to
move away from the best efficiency flow in order to reduce675

the discharge pressure, while the operating points in BAU
are properly distributed all along the curves.
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Figure 5: Operating points of the pumps for the two classes KSB150
and KSB100 in the daily schedules depicted in Figures 4a and 4b,
computed respectively with strategies BAU and MINLP : cumulated
(bottom graphs), and projected on the head-flow curve (in red) and
the efficiency-flow curve (in green).

Hence, MINLP significantly reduces the energy costs
compared to BAU , despite operating the pumps at lower
efficiency levels. It is worth noting that we could ex-680

pect more savings if the pumping station were designed
in compliance with the MINLP approach, e.g. by right-
translating the efficiency-flow curves of the pumps. To
date, due to the limitation of the solvers, active network
elements (like pumps, valves and tanks) are disregarded in685

the optimal design of water networks [15]. However, our re-
sults call for a study of a systemic approach that takes into
account both the investment and the operational costs.

5.4. Load Shifting

The previous experiments validated the MINLP ap-690

proach and illustrated the benefits in place of the cur-
rent pumping strategy. Additionally, we estimated the ro-
bustness of MINLP to highly dynamic electricity tariffs.
While BAU is mainly driven by water volume thresholds,
which take into account half-day-based pricing, MINLP is695

theoretically compatible with hourly-based pricing. This
type of strategy could thus be envisaged to implement load
shifting at the pumping station, that is to take advantage
of the water storage capacities in order to benefit from,
and to contribute to, flexible power market conditions. To700

certify this usage, we experimented the same benchmark
against the electricity price provided by the European Elec-
tricity Index [33]. Figure 4c depicts the solution obtained
by MINLP for a sample day. As expected, dynamic pricing
does not hinder the capacity of the approach to compute705

near-optimal solutions in very short times: at least one so-
lution was found in 60 seconds for all of the 365 instances,
and, with respect to the day/night pricing, the value of the
mean optimality gap is only slightly higher (3.6%) and the
maximal gap is of the same order (9.6%).710

6. Conclusion and Future Works

This paper proposed a new mathematical program-
ming approach for pump scheduling in a common class of

branched networks with one pumping station raising water
to elevated tanks. Due to the presence of a flow control715

valve at each water tower, the equality constraints arising
both from the pipe pressure loss and the pump head-flow
constraints can be relaxed, making the MINLP convex and
thus tractable with general-purpose solvers. We then show
how to easily derive a feasible solution to the original prob-720

lem and how to characterize its optimality gap.
We applied our approach to a real rural drinking water

distribution network comprising 16 water towers, 31 pipes,
and 6 pumps of 2 different classes. We experimented on
365 different instances, each corresponding to a day of his-725

torical water demand data. Using our approach, we were
able to compute feasible solutions for all instances in less
than 60 seconds with an average 3.0% optimality gap. The
annual energy bill was 16.9% lower than a simulation of
the current operational strategy based on water volume730

thresholds. Finally, the approach succeeded in optimizing
when subject to hourly-based electricity prices, showing
that it is suitable for implementing demand-response, in
contrast with the current strategy.

Our approach has two main advantages compared to735

existing heuristic solutions: (1) it is able, in a very short
time and for networks of a realistic size, to produce opti-
mal or near-optimal solutions with performance guarantee,
and (2) based on an adaptive model that can be handled
by any appropriate black-box solver, it requires almost no740

software development and is easily reproducible.
In future works, our first aim will be to generalize the

approach to other water networks. As the convex model
remains valid, we need to figure out ways to build feasi-
ble solutions from the relaxation and to characterize the745

relaxation gap. Also, although a commercial solver can
quickly solve the proposed convex program for the con-
sidered medium-size network, our approach still relies on
solving an NP-hard problem. The limits of the approach in
terms of network sizes and computation times should then750

be investigated in order to address larger branched net-
works. Finally, the question is how to integrate different
network elements (e.g. specific valves, serial pumping sta-
tions, demand at junction, variable speed pumps, loops)
to the relaxation without altering its performance.755

Another research focus is to expand our approach for
operational control to the entire decision process driving
the management of water networks at different time scales.
For the short term, our approach can easily be extended to
real-time scheduling and embedded in a closed-loop control760

strategy [6]: as soon as the demand or the price diverges
from the forecast, the model can be solved quickly, and the
schedule can be repaired in line with the new solution. A
practical question here is how the prediction errors dete-
riorate the solution quality. For the long term, our exper-765

imental results showed that significant benefits can be ex-
pected from tackling the whole optimization problem cou-
pling design and scheduling in a systemic way; that is by
simultaneously considering the operational costs with the
investment and maintenance costs. MINLP approaches al-770
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ready exist for both design and scheduling and are closely
based on the same core modeling elements. One open ques-
tion is how to integrate the dynamic elements (pumps and
valves) at the scale of the network design problem.
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[19] J. Burgschweiger, B. Gnädig, M. Steinbach, Optimization mod-
els for operative planning in drinking water networks, Optimiza-
tion and Engineering 10 (1) (2009) 43–73.840

[20] P. Skworcow, D. Paluszczyszyn, B. Ulanicki, Pump schedules
optimisation with pressure aspects in complex large-scale water
distribution systems, Drinking Water Engineering and Science
7 (1) (2014) 53–62.

[21] B. Geißler, O. Kolb, J. Lang, G. Leugering, A. Martin, A. Morsi,845

Mixed integer linear models for the optimization of dynamical
transport networks, Mathematical Methods of Operations Re-
search 73 (3) (2011) 339–362.

[22] A. Morsi, B. Geißler, A. Martin, Mixed integer optimization
of water supply networks, in: Mathematical Optimization of850

Water Networks, Springer, 2012, pp. 35–54.
[23] D. Verleye, E.-H. Aghezzaf, Optimising production and distri-

bution operations in large water supply networks: A piecewise
linear optimisation approach, International Journal of Produc-
tion Research 51 (23-24) (2013) 7170–7189.855

[24] L. B. de la Perrière, A. Jouglet, A. Nace, D. Nace, Water plan-
ning and management: An extended model for the real-time
pump scheduling problem, in: Advances in hydroinformatics,
Springer, 2014, pp. 153–170.

[25] A. M. Gleixner, H. Held, W. Huang, S. Vigerske, Towards glob-860

ally optimal operation of water supply networks, Numerical Al-
gebra, Control and Optimization 2 (4) (2012) 695–711.

[26] J. Naoum-Sawaya, B. Ghaddar, E. Arandia, B. Eck, Simulation-
optimization approaches for water pump scheduling and pipe re-
placement problems, European Journal of Operational Research865

246 (1) (2015) 293–306.
[27] B. J. Eck, M. Mevissen, Valve placement in water networks:

Mixed-integer non-linear optimization with quadratic pipe fric-
tion, Tech. rep., IBM Research Report (September 2012).

[28] L. Rossman, EPANET Users Manu, United States Environ-870

mental Protection Agency (EPA), Cincinnati, OH (2000).
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