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Abstract: Non-parametric assessment of extreme dependence structures
between an arbitrary number of variables, though quite well-established in
dimension 2 and recently extended to moderate dimensions such as 5, still
represents a statistical challenge in larger dimensions. Here, we propose a
novel approach that combines clustering techniques with angular/spectral
measure analysis to find groups of variables (not necessarily disjoint) ex-
hibiting asymptotic dependence, thereby reducing the dimension of the ini-
tial problem. A heuristic criterion is proposed to choose the threshold over
which it is acceptable to consider observations as extreme and the appro-
priate number of clusters. When empirically evaluated through numerical
experiments, the approach we promote here is found to be very efficient
under some regularity constraints, even in dimension 20. For illustration
purpose, we also carry out a case study in dietary risk assessment.

MSC 2010 subject classifications: 62H12, 62H30, 62G32.
Keywords and phrases: Angular/spectral measure, dimension reduction,
latent variable, mixture model, extreme dependence, multivariate extremes.

Received December 2013.

1. Introduction

High dimension raises important issues in applied multivariate statistics; while
sample sizes are finite, the set on which probability measures are defined can be
so large that extrapolation is intricate. Referred to as the curse of dimensionality
(Donoho, 2000; Massart, 1989), this phenomenon makes the variance of classical
estimators explode, thereby impeding inference. In extreme value analysis, the
quality of estimation is all the more degraded as it is not carried out on the
entire sample, but on some relatively small number of largest observations that
are considered representative of the tail of the distribution. Whereas a plethora
of techniques has been developed in the field of statistical learning to overcome
this issue (Friedman et al., 2009), multivariate extremes in dimensions larger
that 2 are still handled with difficulty. It is the main purpose of the present paper
to address this issue, by developing a non-parametric technique for identifying
groups of variables (not necessarily disjoint) exhibiting asymptotic dependence.
Beyond a possible overall description of the tail dependence structure, when
these classes are of small dimension, this method would enable further and more
efficient assessment of multivariate tails. It combines recent statistical learning

383


http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1002
mailto:emilie.chautru@mines-paristech.fr

384 E. Chautru

algorithms with multivariate extreme value theory (MEVT). From a practical
perspective, it should be also pointed out that it includes a heuristic criterion
to help select the sub-sample of extreme observations on which inference should
be performed.

From a theoretical perspective, non-parametric assessment of multivariate
extreme dependencies is already well documented. Under the mild assumption
that there exists a tail dependence function, focus is usually on an angular
measure, often referred to as the spectral measure, which characterizes extreme
dependencies. In the bivariate setting, many estimators were proposed to assess
this angular measure (Beirlant et al., 2004; Einmahl and Segers, 2009; Ein-
mahl et al., 2001; Resnick, 2007). Bayesian models have also flourished (Boldi
and Davison, 2007; Guillotte et al., 2011), in which vein Sabourin and Naveau
(2014) recently proposed a novel algorithm that handles moderate dimensions.
Unfortunately, their technique is only efficient when all variables considered
are asymptotically dependent; higher-complexity angular measures may not be
studied with their method. Hence, were we able to first identify groups of de-
pendent variables in regard to their extreme behavior, the aforementioned esti-
mators would enable more precise estimation up to dimension 5. Lately, Haug
et al. (2009) have adapted a classical dimension reduction method, Principal
Components Analysis (PCA), to multivariate extremes analysis. Under an el-
liptical copula assumption, they recover the set of straight lines summarizing
best the extreme covariance function, thereby leading to a clustering of variables
based on extreme dependence. Following in their footsteps, we propose to bor-
row algorithms from statistical learning to achieve dimension reduction, without
making any parametric assumption in contrast. Our goal is to identify and in-
terpret hopefully small groups of asymptotically dependent variables, possibly
overlapping. For this, we exhibit a natural mixture model of the angular mea-
sure that corresponds to a partition of the space it lives in: the simplex. Useful
properties arising from this setting are revealed and exploited. Inference aims at
recovering the components of the mixture, which define all groups of variables
exhibiting asymptotic dependence. Mimicking classical non-parametric angular
measure estimation, it focuses on the cloud of observation angles related to the
Lo-norm. In a first step, they are projected on a space with drastically lower di-
mension by using a recent algorithm that adapts PCA to Riemannian manifolds
(Jung et al., 2012). Then, identification of the groups of interest is subsequently
achieved by implementing an appropriate clustering technique on the obtained
sub-space (Dhillon et al., 2002). To illustrate the assets and liabilities of our
method, we perform numerical experiments and conduct a real case study for
dietary risk assessment.

The paper is organized as follows: we start off in Section 2 by recalling a few
basic notions in angular measure analysis and introducing the main hypotheses,
subsequently used throughout the methodological part of our work in Section 3.
There, we introduce a mixture model for the angular probability measure and
emphasize the ensuing fruitful properties it enjoys, when viewed as a latent vari-
able model. Then we turn to the practical aspects of the approach we promote
and depict our strategy for statistical inference under the assumed model, based
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on dimension reduction techniques, in Section 4. It is supported by numerical
experiments carried through in Section 5, and subsequently applied for illustra-
tion purposes to dietary risk assessment in Section 6. In view of both simulation
and case study results, assets, liabilities and natural extensions of our method
are finally listed and discussed in Section 7.

2. Angular measures

Throughout this article, we consider X := (Xi,...,X4) a d-dimensional ran-
dom vector, d > 2, with Lebesgue-dominated probability distribution P on the
positive orthant C := [0, +o0]¢ and cumulative distribution function (cdf) F,
whose tail structure we wish to assess. For all j in {1,...,d}, we denote by
P; the j-th 1-dimensional marginal distribution of IP, i.e. the probability distri-
bution of X;, with corresponding continuous cdf F;(x) := P;([0, z]), x = 0.
Statistical inference on the extreme behavior of F' will be based on the ob-
servation of a sample X1,...,X, of n > 1 independent copies of X (we shall
write X; = (Xi1,...,Xiq4) for 1 < 4 < n). Also define the random vector
Z :=(Z1,...,2Z4) of standardized components

Zjl=%j()(j),je{l,...,d}, (1)

and the corresponding transformed sample Z1,...,Z,. All Z;, j € {1,...,d},
are standard Pareto distributed, i.e. for all z > 1 we have P (Z; > x) = 2~ L.
It is customary in MEVT to assume that the cdf F' of X is in the maximum

domain of attraction (MDA) of a multivariate extreme value distribution (EVD)

G, i.e. for all j € {1,...,d} there exists sequences a,,; > 0 and b, ; € R such
that
max Xi1—bn1 max Xid —bn,a
p<L <z,..., —C gxd> — Gx) (2
Gn,1 QAn,d n—+0
for all continuity points x := (z1,...,24) € R? of G, where the d marginals

of G are univariate extreme value distributions (c¢f. e.g. Beirlant et al., 2004,
Section 2.1). Here, it is assumed that there exists a Radon measure p called ez-
ponent measure, not identically zero and not degenerate at a point, concentrated
on the blunt convex cone Cy := [0, +00]%\{0} such that

+P (% e ) (). 3)

t—+w0

In this equation, 0 denotes the null vector in R? and the notation “—-" stands
for the vague convergence of measures in C,: for all continuous functions with
compact support f: C. — Ry,

Z
(@) Lo
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The distribution of a random vector Z that fulfills Eq. (3) is said to be regularly
varying in the multivariate sense. Actually, when combined with the assumption
that for all j € {1,...,d} the marginal F} is in the maximum domain of attrac-
tion of a univariate EVD G;, Eq. (3) implies Eq. (2). Here we do not require
the existence of univariate maximum domains of attraction.

The exponent measure exhaustively describes the extreme dependence struc-
ture between the random variables X1,..., X4, see for instance Section 8.2.3 in
Beirlant et al. (2004) or Section 6.5.6 in Resnick (2007). It is homogeneous, i.e.

for all 0 < s < 400 and Borel subsets B of C :  u(sB) = s ' u(B), (4)

and fulfills d marginal constraints expressing the nature of the marginal survival
functions, namely

forallj=1,...,dand 0 <z < 40: p({xeCe:z;>z2}) =271 (5)

see for instance Section 8.2.2 in Beirlant et al. (2004) and Section 6.1.4 in Resnick
(2007). When switching to pseudo-polar coordinates, p enjoys a particularly use-
ful representation. Choose two norms |.[ 1) and [|.[(2) on R? with corresponding
unit hyperspheres S(;) and S(z) and define the following mapping:

T ( C — (0,+OO]XS(2) )
x — (pw) = (Ixlw), */Ixl2) /

with 7! (p,w) = pw/|w| 1) = x. Typical choices of norms include the Ly-norm
or the sup-norm L. Then, the homogeneity property stated in Eq. (4) implies

poT ti=pu_1®8,

where the radius measure p_1, defined on (0, +00], is such that for all x > 0,
p—1((z,+0]) = 7!, and the angle measure S, referred to as the angular
(or spectral) measure, has support on §2 := S(3) N Cx and satisfies

S(B) = p({xeCu:[xla) =1, x/Ix|) € B}) (6)

for all Borel subsets B of 2. A simple normalization of S yields the so-termed
angular probability measure @ on €,

S
9 5@

Set w = Z/|Z|2) and p = |Z]1), then Equations (3), (6) and (7) imply

(7)

tP(we. p=t) == S(), (8)
Plwe.[p>t) = Q) (9)

LCD”

where “—” stands for the convergence in distribution. In words, @ is the
limit distribution of the angles when the radius gets infinitely large. It thereby
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encapsulates the extreme (or asymptotic) dependence structure between the d
variables in dimension d — 1. Observe that Eq. (5) can be expressed in terms of

moment constraints for S and @ respectively: for all j in {1,...,d},
Wy Wy 1
S(dw) =1 and f Qdw) = ———. (10)
.[Q lwll 1) a lwllq) S(€)

3. Mixture model of the angular probability measure

The extreme dependence structure between the variables Xi,..., Xy can be
expressed in terms of the geometry of the support of @ (or S), which we denote
by supp(Q). Indeed, recall that supp(Q) is included in €2, the positive orthant of
the unit hypersphere S,), or the simplex associated with |.|(2). The latter can
be partitioned into 2% — 1 non-empty and disjoint open faces with dimensions
ranging from 0 up to d — 1. They are identified by the collections of indexes
corresponding to the non-empty subsets of {1,...,d}. Let Py denote the power
set of {1,...,d} and P} := P4\{J}. For any h € P}, the open face identified by
the set of indexes h is written

O ={weQ:w;>0Vjeh w;=0VYj¢h}.

It is of dimension #h — 1, where #h denotes the cardinal of h. See Figure 1
for an illustration in dimension 3. By convention, the set referring to the empty
face is denoted by Qg := .

Given this decomposition, for any h € PJ, Q(Qs) # 0 implies that all X;
such that j € h exhibit asymptotic dependence (see Beirlant et al., 2004, Section
8.2.3). Observe that the converse is not necessarily true: Q(€2;,) = 0 does not im-
ply the asymptotic independence of {X; : j € h}. For instance, take X1, Xo, X3

Z3 Z3
Qsy

Q1,3 Q2,3

Qyay
Zy Iy Zy

Q1,2

F1G 1. The 7 nonempty open faces in the Lao-norm simplex 0 in R3: the 3 vertices (left), the
3 edges (right), and the interior (left).
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three asymptotically dependent variables. Then @ has no mass on {¢; 9 (only
on (¢ 5 33) even though X; and X, are asymptotically dependent. Therefore,
recovering the set of faces that intersect with the support of @ suffices to iden-
tify the sets of variables that are dependent in the extremes, but only then is
it possible to deduce which ones are not. This motivates the following mizture
model:

Q) = Z 7 Qn(.), (11)

hePy

where for all h € Py, m, := Q() and

On() = {Q(. 0 0)/QM) I Q) # 0,

0 otherwise.
In addition, denote by #H the set made of all open faces intersecting supp(Q):
H:={hePs: Q) #0}.

Then for all h € H, Q, is by definition a probability distribution on €. Even
so, it cannot be interpreted directly as the angular measure of {Z; : j € h} in
the sense that it does not fulfill the marginal condition stated in Eq. (10) (see
Section A.1, p.412). Obviously, we have m, € [0,1] for all h € P), mz = 0 and
2hep, Th = 2inew Th = 1.

Following in the footsteps of standard mixture model analysis (see for in-
stance McLachlan and Peel, 2000), we shall assume that there exists an intrinsic
(unknown) clustering of the data into #H classes leading to an identification of
the set of interest H.

Assumption 3.1. There exists a random vector of indicators A € {0, 1}2d that

has Categorical distribution with parameters (pp)nep, € [0, 1]2d7 Sihep, Ph =1,
such that:

(¢) for all h € Py, (mn, # 0) = (pn # 0),
(73) for all h € Pg, Qp is the angular distribution of Z|\, =1, i.e.

D @n() ifheH,
P(we. zt =1 — .
( | p h ) t—+w0 {0 otherwise, 12

(ii) ¥ he P, (mh = 0) = (p = 0).

We conjecture that in the present setting, Eq. (3) is a sufficient condition for
Assumption 3.1 to be fulfilled.

Remark 3.1. It is always possible to construct a categorical vector A € {0, 1}2d
that meets the requirements (7)—(4i¢) of Assumption 3.1 from a categorical vector

X e {0, 1}2d that only fulfills conditions (¢) and (¢¢). Indeed, let (pj,)rep, be the
parameters of the distribution of such a random vector A. Consider the sets
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Aoo :={h € Pg:mpn=0,pp =0}, Auy := {h € Pg: mp # 0,pp, # 0} and
Ao« :={hePg:mp=0,p, # 0} and define A € {0, 1}2d with components

)\h if he »AO,O U A*,*,
0 it he Ao \{T},
Ap =
I{ Y X=1} ifh=g,
éEAo,*

where I{.} is the indicator function. Then A has Categorical distribution with
parameters (pp,)nep, defined for all h € Py as

Dh if he .Ao,o v A*,*,
pr=14"Y if h e Ao\ D},
X Do ifh=g,
EE.A(),*

and it fulfills all three points of Assumption 3.1.

Some useful properties can be established in such a setting. We display here
two results which are subsequently exploited for inference, as shall be seen in the
next section. Proofs and technical details are deferred to the appendix, in Sec-
tions A.1 and A.2 respectively. The proposition below exhibits the asymptotic
behavior of conditional marginals under the latent variable model.

Proposition 3.1. We place ourselves in the framework of Section 3 and denote
by H(j) the set {he H :je h}. Then, for allje{l,...,d}, he Pq, x =1,

tP (Zj >uat | Ap = 1) Rt Cj.h 7, (13)

where Zhepd phcjn =1 and ¢;p € [0,1/py] is non-null if and only if h € H(j).

Therefore, nonempty open faces intersecting supp(Q) are identifiable by re-
maining only in the univariate level. In particular, the following result reveals
that there exists a function, the asymptotic behavior of which enables the char-
acterization of {#H(j), 1 < j < d}, and by extension of H.

Proposition 3.2. We place ourselves in the framework of Proposition 3.1.
Forallje{l,...,d}, he Pq, x = 1, define the functional

+0
Kj.n(t) :=J‘1 tP(p=t)P(Z;>at|p=t, Ay =1) da,

and assume that there exists some constants v* € (0,1), ¢* = 0 and t* > 1, such

that for all j € {1,...,d}, h ¢ H(j),

P (Z; tlAp=1 .
Vo >1, (t>t*):< (J>UC | h )gc*w_l/'Y).

P(Z >t M =1)
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Then

Kj’h(t) t—>_+th

{4—00 if he H(j) and Yt >t*, 1) g(t) < +oo. (14)

0 ifh¢H() v{T}

As a consequence, for fixed dimension j € {1,...,d}, the set H(j) consists of
all sets of indexes h such that x; () diverges as t tends to infinity, instead of
converging towards a finite constant, possibly zero. Since for all h € H we can
write h = {j : h € H(j)}, we have that # is the set of all h € P} such that there
exists at least one index j € {1,...,d} for which x; ;(t) = +00 as t — +o0.

Remark 3.2. The assumption in Proposition 3.2 simply requires that the ex-
treme dependence structure is reached at a reasonably fast rate. It can be di-
rectly linked to the concept of hidden regular variation introduced in Das and
Resnick (2011); Das et al. (2013); Heffernan and Resnick (2005); Resnick (2002,
2007, 2008). A function f : Ry — R, is regularly varying with index « if
for all x > 0, f(zt)/f(t) — z* as t — +oo. Roughly speaking, if the distri-
bution of Z had hidden regular variation, there would be an angular measure
on O\ Jpey ©n when making the radius increase with some regularly varying
function b(t) = o(t) with index 1/a < 1 instead of ¢. In that case, our assump-
tion guarantees that 1/a < 4* < 1, which is a rational condition for hidden
regular variation not to be mistaken for multivariate regular variation in prac-
tice.

The proposed approach to statistical inference is based on Proposition 3.2 as
explained in the next section. Numerical experiments illustrating the relevance
of the method we promote here are subsequently presented in Section 5.

4. Statistical inference

Relying on the probabilistic framework detailed in Sections 2 and 3, we now
review the various steps of the proposed methodology to assess the dependence
structure governing the extreme values of Xi,..., X4. The ensuing algorithm,
which combines techniques borrowed from multivariate extreme value theory
with clustering procedures, is depicted step by step in the next paragraphs.

Just as in classical angular measure assessment, we consider that for some
high enough threshold ¢, asymptotic relations such as in Equations (8), (9),
(13) and (14) are sufficiently well approached to enable estimation. In keeping
with the literature, we use t = n/k, where k represents a number of upper
radii. Asymptotic statistical results in EVT are typically obtained under the
assumption that £k = k,, is an intermediate sequence such that k,, 1 +00 and
kn/n — 0 as n — 400 (see for instance Beirlant et al., 2004, Resnick, 2007, or
De Haan and Ferreira, 2006). For fixed n, this suggests to pick a number k large
enough to get a reasonable variance but also small enough to avoid biasing the
estimation with non-tail observations. Then, the analysis of extremes is carried
on the set of most extreme observations Ny, := {i € {1,...,n}: p; = n/k}, with
cardinal #8j =: ny.
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4.1. Estimation of the marginals

From the beginning, we have worked with the standardized vector Z defined in
Eq. (1) instead of the vector of interest X. In practice Z cannot be computed
directly since it depends on the unknown marginals Fi,..., Fy; it has to be
estimated. To avoid restrictive hypotheses, we privilege here a non-parametric
procedure, usually referred to as the rank transform: for all units i € {1,...,n}
and dimensions j € {1,...,d}, set

~ 1 &
Fi(Xig) =~ DI{Xe; < Xij},
(=1

and pursue the analysis with 21‘,;‘ =1/(1- ﬁj(Xi,j)), 1<i<n, 1<j<d
(Beirlant et al., 2004; Einmahl and Segers, 2009; Einmahl et al., 2001; Resnick,
2007). Angles and radii are subsequently denoted by @; and p; respectively.
For geometrical reasons explained in the next subsection, we set |.| ) as the
La-norm. In addition, we use the L.-norm for ||.|). Observe that whereas it
is unimportant regarding the angle, selecting a specific norm for the radius can
have major implications. This is due to the selection process of tail observa-
tions, defined as those with radius larger than n/k; clearly, different norms are
bound to produce different sub-samples (Einmahl and Segers, 2009). However,
such issues go beyond the scope of our analysis and are not discussed further
here.

4.2. Principal Nested Spheres

Because of the curse of dimensionality, clustering in high dimensions can be
problematic. Thus, it is customary in statistical learning to start by projecting
the data on a manifold of smaller dimension in order to reduce the noise and
synthesize the information. Here, we propose to mimic a classical approach in
statistical learning, namely Principal Components Analysis (PCA, Friedman
et al., 2009). We work on the angles instead of the raw data and set |.||(2) as the
Lo-norm, with unit hypershpere S%~1 in R%. This enables the use of algorithms
that respect the intrinsic distance of S?~ !, like the Principal Nested Spheres
(PNS) technique developed by Jung et al. (2012). It consists of an iterative
projection of the data on sub-spheres of smaller and smaller dimension, called
PNS, which are then identified with the unit spheres S?=2, ..., S!. Sub-spheres
of the unit circle being points, the last PNS (of dimension 0) corresponds to
the Fréchet mean defined in Algorithm 1 (which is not necessarily unique, see
Jung et al., 2012, p.555). More formally, let £ € {1,...,d — 1}. The geodesic
distance between two vectors x and y of S* (the unit sphere in R**1) is written
d%(x,y) = arccosx'y, where x’ stands for the transpose of the vector x. Any
(¢ — 1)-dimensional sub-sphere A,_; in S* is identified by a center v € S* and
a radius r € (0,7/2]: Ag—1 = Ag1(v,r) == {xeS*:d(v,x) =r}. For any
v € S, we denote by R(v) a (¢ + 1) x (£ + 1) rotation matrix that moves v
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Algorithm 1 Principal Nested Spheres

Input: e x1,...,x, €S, n>2 d>3 > The data
e v* e (0,1) > A threshold
Procedure PNS(x1,...,Xn)
Initialization: (xgd_l)7 . ,x%d_l)) — (X1,...,%Xn)

For te{d—1,...,2} do

n
2
1: (vg,7¢) « argmin Z (dZG (xEZ), v) — r) > Find the best fitting sub-sphere in S¢
st =
TZ(EO,%] =t

7

d—1
2: Vie{l,...,n}: §§Z) — (H sin(rj)> (dé (x(.l),vz) — rg) > Stock the scaled residuals
=L

3: Vie{l,...,n}: ;(1(2) — P (xgl) | Vg,’r‘g) > Project the data on the sub-sphere
4: Vie{l,...,n}: xgefl) — fo (igl) | vz) > Identify the sub-sphere with S¢=1
For ¢ =1 do
i 2
1: (vi,71) « (argmin Z dé (xgl), v) , 0) > Find the Fréchet mean vi
(=S —

d—1
2: Vie{l,...,n}: 51(1) — (H sin(rj)> (dlc (xz(-l),vl)) > Stock the scaled residuals

j=1

() (0)
Return (xi )1<z<n ’ (fi )1<i<n
2<0<d—1 1<6<d—1

End procedure

Procedure SELECTPNS(PNS(x1,...,Xn), v*)
Initialization: e £ « 1
o vy «— V(1) > Relative variance of the 1st PNS
o vy «— V(2) > Relative variance of the 2nd PNS
‘While vy = v* and v; = v* do
1: b0 +1
2: vg «— V1
3: v1 « V(£) > Relative variance of the ¢-th PNS
Return (XEZ)) ) > The data projected on the selected PNS S*
<ig<n

End procedure

to the north pole and by R™(v) the ¢ x (¢ + 1) matrix consisting of the first £
rows of R(v) (see Jung et al., 2012, p. 567 for more details on R(v)). A sub-
sphere Ay_; € S* can be identified with the unit sphere S*~! using the function
fe(. | v,r) s A1 (v,7r) — S~ such that fo(x | v,r) = sin(r)~' R=(v)x for all
x € S*. The projection of any point x € S®\{—v, v} on a sub-sphere A, ;(v,7)
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P( | vévrf)
(J 7T
o
e O
(]
([ PY [ J
® [ J
[ J \ ([}
([ J b4
----- >
e
SZ - R£+1 SZ c RZJrl Sﬁfl - RZ

Fia 2. Schematic illustration of steps 1, 3 and 4 of the first For loop in Algorithm 1 at
iteration £ € {d —1,...,2}.
is denoted by

%= P(x | v,r) = sin(r) x + sin(d% (x,v) —r) v

sin(d% (x, v))

The procedure PNS() in Algorithm 1 summarizes the main steps of the PNS
algorithm of Jung et al. (2012), the code of which was made available by its
authors at http://www.stat.pitt.edu/sungkyu/MiscPage.html. An illustra-
tion of the key steps is given in Figure 2. Practical issues like the possible multi-
plicity of Fréchet means go beyond the scope of our work and are not discussed
here. In the end it is practical to restrict the rest of the analysis to one of the
d—2 PNS of positive dimension, chosen for instance by the simple rule-of-thumb
procedure SELECTPNs() in Algorithm 1. It relies on the calculation of the rela-
tive variance encapsulated in each PNS (Jung et al., 2012, Section 2.4): for all

e {1,...,d—1},
n 2
X (&)
1

j=1i=1

V() :=

where {Z-(Z) is the scaled residual of the projection of observation i from S
onto S~ defined in Algorithm 1 — scaling the residuals is required to com-
pare geodesic distances in different spaces (Jung et al., 2012, Section 4). In
other words, V() is supposed to give an indication of the level of data vari-
ability explained by the ¢-th PNS. Then, the SELECTPNS() procedure simply
consists in recursively checking that V() is greater than a user defined threshold
for £ =1,2,... and select the first PNS after which the condition is no longer
satisfied; we stop as soon as the gain in explained variance is considered too
low to justify raising the dimension. As was pointed out by Jung et al. (2012),
projecting the data onto spheres of very low dimension like S' and S? usually
suffices to explain most of the the variability.
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o

FIG 3. Ezample in R® where the angles are concentrated around the vertices and the middle
of the edges: using the La-norm and applying PNS gives a good representation of the data in
dimension 1 (left block); using the Li-norm and applying PCA gives a good representation
of the data in dimension 2 but not in dimension 1 (right block).

Other algorithms could have been used to project the data on manifolds
of smaller dimension, see for instance Fletcher et al. (2004); Huckemann and
Ziezold (2006); Jung et al. (2011). Had the angles been calculated with the
Li-norm, PCA would have been an acceptable choice too. Our preference for
PNS is justified by its ability to synthesize the structure of the data in very
small dimensions by taking into account the intrinsic property that the angles
are of norm 1. Jung et al. (2012, p. 562-564) observed on real data analyses
that when the observations are located on a Riemannian manifold, “Fuclidean
principal component analysis, which completely ignores the manifold nature of
the data, gives the worst performance”, whereas “the principal nested spheres
capture more interesting variability in fewer components”. In the present con-
text, although there is no absolute guarantee that PNS is more suitable than
PCA, it is nonetheless possible to find configurations where this postulate is
verified, like shown in Figure 3.

4.3. Spherical k-means

The projected data obtained by running Algorithm 1 can be organized into
groups that will later serve to assess the set H. For this, we propose to use an
accurate clustering procedure such as spherical k-means (Dhillon et al., 2002;
Maitra and Ramler, 2010), based again on the geodesic distance, which we

describe hereinafter. Choose a number M of clusters and let m € {1,..., M}
and £ € {1,...,d —1}. For any set of n > 1 points x := (x1,...,X,) on the unit
sphere S¢ ¢ R¥*! such that for all i € {1,...,n}, x; := (2;1,...,%i¢+1), define

the barycenter function

!/
B (x) := (% in,la'-w% szé>
i=1 i=1

and SB(x) := B(x)/||B(x)|2 its projection on S*. Let I; ,,, be the binary variable
that indicates whether observation i belongs to cluster m (I;, = 1) or not
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Algorithm 2 Spherical k-means

Input: e x1,...,x, €S, £>1,n>2 > The data
e Me{l,...,n} > The number of clusters
® v, > A user-defined tolerance

Procedure SKM((x1,...,%n), M, v{,)

Initialization:
1: T« 0
2: vg «— —00
n
3: c%O} «— argmin Z dZG (x4, c)2 = Initial concept vectors
ceSt =1

2
4: Vme{2,...,M}: c(,g) «— argmax dZG (xi,SB (cgo),...,c(,g)))

{xi,1<i<n}

2
5:Vie{l,...,n} Vme{l,...,M}: Ii(orgl « argmin dé (xi,cgo)) > Cluster indicators

1<G<M
6: v1 «— Vé ((152)) > Intra-class geodesic variance

1<m<1v1>

‘While vy —vg = v& do
1: vg «— v

2: Yme{l,...,M}: c(mTJrl) — SB (xI(mT)> > Concept vectors
2
3:Vie{l,...,n} Yme{l,...,M}: Il.(thl) «— argmin dé (xi,c(.ﬂ'l)) > Cluster
’ 1<j<M J L

indicators

4: v «— Vé ((Ig)) ) > Intra-class geodesic variance

1<m<M
5 T« T+1

Return (I-(T) > The final cluster indicators

z,m)lSiSn
1<m<M

End procedure

(Iiym = 0). For all m € {1,..., M}, set xL,, := (X1 L1.m,---sXn Inm). The
normalized barycenter of class m is called the concept vector and is denoted by
cm = SB(x1,,). The objective of the spherical k-means algorithm is to find the
collection of cluster indicators that minimizes the intra-class geodesic variance

M n
Vé ((Im)lgmgM) = Z Z (dé(xivcm)li,m)2
m=14=1

This is achieved in the manner depicted in Algorithm 2, which corresponds to
the function skmeans with option start = “S” in the R package skmeans. The
option “S8” specifies the method used to choose the initial concept vectors (steps
3 and 4 of the initialization of SKM() in Algorithm 2). It produces an initial
clustering with centers as scattered as possible. Obviously, many other initial-
ization techniques may have been applied, e.g. picking the first concept vectors
at random. Such considerations are disregarded here. The main advantage of the
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spherical k-means algorithm is that it is very simple to implement. However, it
can often happen that it remains stuck at a local minimum of the intra-class
geodesic variance function. To counteract this undesirable effect, many refine-
ments have been proposed in the literature (see for instance Dhillon et al., 2002
and the references therein), which are overlooked here.

Obviously, many other natural techniques in mixture models analysis could
have been adopted (McLachlan and Peel, 2000); our preference for geometrical
methods is based on a strong belief that Riemannian geometry is a key con-
cept for understanding the structure of the angular (probability) measure, as
suggested by the encouraging results of the numerical experiments conducted
in Section 5.

4.4. Estimation of H

The clustering obtained after the successive application of Algorithms 1 and
2 can now serve to assess H in the following manner. Let k£ € {1,...,n} and
Me{l,...,n, A 2% — 1}, where nj, A 2¢ — 1 := min(ny,2¢ — 1) (notice that M
depends on k). Assume that we have at our disposal a clustering into M groups
of the set of most extreme observations Ny identified by the binary variables
Iim, i€ R, me {1,..., M} obtained with Algorithm 2. Now denote by Fjs the
set of injective functions

Far ( {1,...,.M} — Pd>

m — h

with image I'm(fyr). Provided that M = #%H, our hope is that there exists fs
in Faq such that Im(far) = H, t.e. H = {fm(1),..., fmu(M)}. In that case far
would be a bijection between {1, ..., M} and H and, by virtue of Proposition 3.2,
we would have the M equalities

fM(m) = {j € {1,,d} DR far(m) t—) -I-OO}7 m e {1,,M}

—>+%0

Assuming that such a mapping exists, we propose to assess it with the statistic
fumr constructed as follows. Consider that I; ,, is an estimator of A and
foralme {1,...,M}, je{l,...,d}, set

+0 1 =N
Rjm(k) = f - 2 ]I{Zi,j > x%, Lim = 1} dz,
1

i, far (m)

where np, 1= >0, ]I{fi,m = 1} is the size of cluster m. This statistic, detailed
in Section A.3, can be viewed as the empirical counterpart of «; r, (m)(n/k).
Then, for all m e {1,..., M} define

Fu(m):={je{l,....d} : Rjm(k) » 0}.

To decide which couples (j,m) fulfill the condition K; (k) » 0, we perform a
scree test-like analysis (Cattell, 1966) described in Algorithm 3.
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Algorithm 3 Estimation of fas
Input: e (k,M)e {1,...,n} x {1,...,n A 2¢ — 1}

. (21) € (Rd)nk > The standardized data with largest radii
1EN
o (Iim)iexn, € {0, 1}k xM o The cluster indicators
1Sm<M

Procedure FM((k,M), (22) . (Ii,m)iex,, )

1ERE 1<m<M
1: (Iil, ey /iMXd) — (Rlyl(k‘% ey ’Qd,M(k)) > Calculate all (Kj,m(k))1<j<d
1<m<M
2: (Ii(l), ey /i(MXd)) «— sort (f'%l, e ,RMXd) > Sort the sequence
3: T «— argmax s(T+1) — k(T > Find the biggest jump

1<T<M xd
4 Vmefl,...,M}: far(m) — {j e{l,....d}: Rjm(k) > K(T*)} > Assume 7 (k) » 0
if Rjm (k) > £

Return (fM (m))

1<m<M

End procedure

This procedure only makes sense if M = #H and k is large enough to assume
that R ., (k) approximates the limit of x; ,(t) as t — -+o00. Since in practice #H
is usually unknown and k has to be picked at hand, we develop a heuristic
criterion to measure the quality of a clustering, given some k € {1,...,n} and

Me{l,... npga2¢—1}. Set Ha(j) := {fM(m) L je fu(m), me {1,...,M}}
and consider the statistic

It is built from Eq. (14): after having computed %; (k) on all me {1,..., M},
we add up all quantities corresponding to fM(m) € 7-A[M(j) (which should be
large) and subtract the others (supposedly close to zero). When (k, M) provides
an accurate clustering of the data, Y (k, M) is expected to reach high values. To
avoid possible practical errors, we further refine this criterion with some addi-
tional constraints. Specifically, classes should contain more than 1 individual,
groups should each identify a different open face and no set Hps(j), 1 < j < d,
should be empty. Observe that while the first two conditions are just common
sense, the last one is necessary to guarantee that the marginal distributions
of the standardized data are standard Pareto. Finally, we retain the partition
inherited from (k*, M*) := argmax(kﬁM)T(k, M), where
Tk, M) := Yk, M) x [ [ Linm > 1} x H]I{'HM(]') ” @}
m=1 7j=1
< T 1{fulm)# fam)}. (15)

1<m#m’'<M
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Observe that the condition I {n,, > 1} makes it impossible for our procedure to
work if #H exceeds 2 X ng. This is not surprising: complex underlying models
demand large datasets to be assessed. Finding the maximum in Eq. (15) requires
the computation of Y(k, M) for all (k, M) in {1,...,n} x {1,...,n, A 2¢ — 1},
which can be time-consuming from an algorithmic point of view. As a result,
we recommend to restrict the analysis to k& comprised between 10 and |n x 0.3],
where |.| denotes the floor function. In addition, to reduce the number of cal-
culations required to choose M given some fixed k, we propose to iteratively
compute Y(k, M) for M = 1,2,... and stop as soon as the next 5 iterations
cease improving it (steps 3 to 19 of the For loop in Algorithm 4). The complete
procedure involving the estimation of the marginals, the PNS, the spherical
k-means and the estimation of # is synthesized in Algorithm 4.

On account of the nice properties of the rank transform (Das and Resnick,
2011; Heffernan and Resnick, 2005; Resnick, 2007), we can reasonably hope
that these statistical objects converge to the true quantities they approximate
as n — +o0, provided at least that k* fulfills the usual conditions k* =k, 1 40
and k% /n — 0 as n — +0o0. Unfortunately, due to the lack of probabilistic results
on PNS and spherical k-means, which were originally introduced as geometrical
techniques, we cannot provide here a thorough asymptotic analysis of the solu-
tion output by the statistical procedure described above. Nonetheless, as shall
be seen in the next section, numerical experiments provide strong empirical
evidence of the efficiency of the approach we propose.

5. Numerical experiments

We tested our method through a number of numerical experiments, for various
values of n, d, and #H. In doing so, we tried to handle various types of extreme
dependence structures, to illustrate the impact of the complexity of supp(Q)
on our algorithm. In the next two subsections, we first describe the different
scenarios analyzed, then present and comment on the simulation results.

5.1. Settings

We generated n i.i.d. copies of a d-dimensional random vector (X7, ..., X4) with
varying degrees of extreme dependence. Observations were drawn using the gen-
eral asymmetric multivariate logistic model: for any x = (x1,...,24) in R‘i, for
allj € {1,...,d} define y;(x;) := (1 +; (z; — b;)/a;) "7 if 1+ ~; (x; — by)/a;
is positive, and set #H,d > 1. The data was generated according to the follow-
ing distribution:

Th
P(X; <a1,...,Xqg < q) =exp {— Z <Z yj(xj)l/’l‘h> } 7
heH \jeh

where 7, € (0, 1] is a parameter that controls the strength of the asymptotic
dependence within the group of variables indicated by h. In particular, r, = 1
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Algorithm 4 Dimension reduction of multivariate extreme values

Input: e X1,...,X, € R? > The original dataset
e v* e (0,1) > A threshold for Algorithm 1
e v €(0,1) > A tolerance for Algorithm 2

Procedure DIMREDMEV ((Xl7 L Xp), vr, va)

Initialization
~ 1 & -t
LViefl,...,n}Vjie{l,...,d}: Zij e (1— = Y T{Xy; < X;;} > Standard-
™= ized data
2: Vie{l,...,n}: (@, Ps) « (21/”21\\2, ||21||f> > Pseudo-polar coordinates

3 Ke—{1,...,[nx 03]} (M1,..., Mpxo3)) < (1,...,1)

For ke K do
1: R «— {1 e{l,...,n}: p; =n/k} > Set of observations with largest radii
(ot 2y * i
2: (wi)ieNk « SELECTPNs (PNS ((wl)ienk) , v ) > PNS (Algorithm 1)

3: M « 0 (To, . ,T5) < (0,1,0,0,0,0); T « 0 = Initialize the search for an optimal M

4: while Ty < max Te and Y1 > min Tg do
£#0 £#1
5 01
6 while ¢ < 5 do
7 M— M+1
8: if T > 0 then N N
9: (To,...,Ts) < (T1,...,75,0); £ <5
10: end if
11: (Ii,m)ien,, «— SKM ((&I) , M, v&) > Spherical k-means
1<m<M iRy (Algorithm 2)
12: Far(m « Fum ( k, M), (Z; s (Tim )ien ) > Estimate H
( ( ))1<m<M ( ) ( Z)iENk (L M);EgﬁsM (Algorithm 3)
13: Vief{l,...,d}: Hu(j) « {fM(m) cjefulim), 1<m< M} > Estimate all
N N Hoa (5)
14: YTy« Y(k,M) > Quality of the clustering
15: L—L+1
16: end while
17: T—T+1
18: end while
19: M «— M -5 > Optimal M for fixed k&
(k*, M*) «— argmaxY (k, My,) > Optimal couple (k, M)

kel

Return k*, (fM* (m))

1<m<M*

End procedure
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TABLE 1
List of scenarios considered in our numerical experiments; open faces intersecting with
supp(Q) are filled in, with the corresponding extreme dependence coefficient rp,

Scenario 1 Scenario 2 Scenario 3
HH =2 d =20 #H =4 d =20 H#H =4 d=26
heH Th heH Th heH Th
{1,2,3} 0.1 {1,2} 0.1 {1,2} 0.1
{4,...,20} 0.1 {2, 3} 0.1 {2, 3} 0.1
{4} 1 {4} 1
{5,...,20} 0.2 {5,6} 0.2

gives asymptotic independence, whereas asymptotic perfect dependence occurs
when 7, &~ 0. Observe that with such a model, though it was not required in our
analysis, the marginal distributions of X7,..., Xy are extreme values distribu-
tions, which naturally belong to their own maximum domain of attraction. Our
preference for this model was purely practical: simulations were performed using
function rmvevd in R package evd (Stephenson, 2003). We repeated 100 trials of
Algorithm 4 under 3 scenarios listed in Table 1. Notice that in accordance with
what was pointed out in the introduction and suggested in Sections 3 and 4, in
scenarios 2 and 3 some classes overlap ({1,2} n {2,3} = {2}).

To limit computation time, we tested its performance on 5 different sam-
ple sizes, namely n = 500, 1000, 5000, 10000, and 10 thresholds ¢t = n/k, with
k =n x0.001,n x 0.002,...,n x 0.01. For the same reason, we disregarded sit-
uations where d > 20. However, in MEVT, d = 6 and d = 20 can already be
considered as high dimensions.

5.2. Results

Results are displayed in Table 2, Table 3 and Table 4. The highlighted row re-
ports the number of trials where we managed to exactly recover the set of open
faces intersecting with the support of the angular probability measure. As ex-
pected, in all scenarios, results improve when n increases, and success rates
become particularly satisfactory as soon as n = 5000, for they then exceed 85%
in all 3 scenarios. The best performance is obtained in scenario 1, where d = 20
and #H = 2. Indeed, even with a very small sample (n = 500), only 10 trials
out of 100 fail to recover the true decomposition of supp(Q), while in scenario 3,
where d = 6 and #H = 4, this rate never goes below 12% for any n. This

TABLE 2
Results of our numerical experiments in scenario 1, repeated on 100 trials

n
Estimation of H 500 1000 5000 10000
Accurate sets {1,2,3},{4,...,20} 90 96 100 100
Other inaccurate sets 10 4 0 0
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TABLE 3
Results of our numerical experiments in scenario 2, repeated on 100 trials

n
Estimation of H 500 1000 5000 10000
Accurate sets {1,2},{2,3}, {4}, {5, . . ., 20} 54 72 97 93
{1,2},{2,3}, {4}, {5, ..., 20}, {1} 2 3 0 0
Extra sets
with cardinal 1 {1,2},{2,3}, {4}, {5, ..., 20}, {3} 7 2 0 1
{1,2},{2,3}, {4}, {5,...,20},{1},{3} 1 0 0 0
{1,2},{3}, {4}, {5,...,20} 13 12 0 1
Missing set {1},{1, 2}, {3}, {4}, {5, ..., 20} 1 0 0 0
{1,2} or {2,3} {1},4{2,3}, {3}, {4}, {5, ..., 20} 8 5 1 1
{1},4{2,3}, {4}, {5,...,20} 0 0 0 0
Other inaccurate sets 14 6 2 4
TABLE 4
Results of our numerical experiments in scenario 3, repeated on 100 trials
n
Estimation of H 500 1000 5000 10000
Accurate sets {1,2}, {2, 3}, {4}, {5, 6} 39 65 85 88
. {1,2},{2,3}, {4}, {5, 6}, {1} 0 1 0 0
E;gsl;etf With 4 9y {2,3), {41, {5, 6}, {3} 1 1 0 0
{1,2},{2,3}, {4}, {5, 6}, {1}, {3} 1 0 0 0
{1,2}, {3}, {4}, {5, 6} 16 11 6 2
Missing set {1}, {1, 2}, {3}, {4}, {5, 6} 0 0 0 0
{1,2} or {2,3} {1}, {2, 3}, {3}, {4}, {5, 6} 23 14 5 6
{1},{2, 3}, {4}, {5, 6} 0 0 0 1
Other inaccurate sets 20 8 4 3

suggests that rather than the dimension, the complexity of supp(Q) may be one
of the principal determinants of the performance of our procedure. Actually,
given two angular probability measures with equivalently complex supports,
increasing dimensionality can produce better outcomes. This is the case with
scenarios 2 and 3, where supp(Q) is contained on small subsets of 4 open faces,
but d = 6 in the former while d = 20 in the latter. These results are not surpris-
ing and illustrate a typical phenomenon called the blessing of dimensionality
(Donoho, 2000); as d increases, observations occur in relatively small subsets of
the original space and are therefore easier to detect and separate. This property
is the basis for common techniques in statistical learning, such as the widely
celebrated support vector machine (Friedman et al., 2009, Chapter 12), which
projects the data onto some space with higher dimension in which they are well
divided. In our numerical experiments, switching from scenario 3 to scenario 2
significantly reduces the risk of overriding either Q({1,2}) or ({2, 3}), which
are very close to one another in the unit hypersphere and may be wrongfully
confused during the PNS procedure. Observe nonetheless that these simulations
were performed for very small values of parameter rp,, i.e. all dependencies were
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strong. Since we used the multivariate logistic model, this means that for all
h € H, subsets supp(Q) n ), did not cover the entire open faces €, but were
concentrated around small neighborhoods of one of their points. Had we consid-
ered less obvious extreme dependencies, these results would have probably been
significantly degraded. This remark can be linked to the influence of the hidden
angular/spectral measure on inference (Resnick, 2002), which controls the rate
at which extreme structure is reached and thus dangerously impacts statistical
analysis if the chosen threshold n/k is too small.

In fine, these results are quite encouraging, and underline the usefulness of
algorithms from the field of statistical learning for MEVT, provided of course
that the underlying model is not too complex.

6. Application to dietary risk assessment

While eating is the privileged way of providing the necessary nutrients for the
human organism, it also conveys toxic elements that, due to various environmen-
tal causes, contaminate the food. When consumed over certain tolerable doses,
called dietary intake limits (DIL), these toxic elements can have a non-negligible
impact on health. Similar phenomena also occur when diets are either too rich or
too poor in nutrients. More importantly, further noxious effects may be caused
by possible interactions between elements that are ingested simultaneously (Car-
penter et al., 2002). For international institutes concerned about public health
issues such as the WHO (World Health Organization), FAO (Food and Agricul-
ture Organization), UNEP (United Nations Environment Program), EFSA (Eu-
ropean Food Safety Authority) or for national agencies such as the Anses (the
French Agency for Food, Environmental and Occupational Health & Safety), it
is then of major interest to identify cocktails of food chemicals to which popula-
tions are indeed highly exposed. Extreme value theory has already proven useful
to assess the probability of getting over a single dietary intake limit, in both uni-
variate (Tressou et al., 2004) and bivariate settings (Paulo et al., 2006). Here, we
propose to apply Algorithm 4 to examine the relationships between high simul-
taneous long-term exposure to 6 common nutrients and contaminants, namely
iron (Fe), calcium (Ca), sodium (Na), methylmercury (MeHg), cadmium (Cd)
and dioxins and dioxin-like polychlorinated biphenyls (PCB-DL). Their long-
term toxicity is well-known, see for instance Anses (2011) and Carpenter et al.
(2002). Methylmercury, cadmium, and PCB-DL are three contaminants found
mainly in seafood products. While cadmium was recognized in 2004 as a type 2
carcinogen by the European Union, methylmercury and PCB-DL can attack the
nervous system. Sodium, calcium and iron are three minerals principally found
in animal products such as meat or dairy products. Long-term over-exposure to
these nutrients is also harmful, e.g. consuming too much calcium can provoke
urinary and renal calculi and excessive ingestion of sodium favors cardiac issues.
As for iron, some studies have underlined a probable link between its excessive
ingestion and Parkinson disease (Jenner et al., 1992). The current knowledge
about possible synergistic effects between these chemicals, which may increase
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sanitary risks, is still quite poor, due to the complexity of these phenomena. Only
methylmercury and PCB-DL have been studied jointly, and their simultaneous
consumption was observed to amplify health issues in a number of experimental
surveys (Bemis and Seegal, 1999; Carpenter et al., 2002). Henceforth, recover-
ing groups of nutrients or contaminants to which the population is observed to
be simultaneously over-exposed can help orient future biological and chemical
research, which would in turn provide a better understanding of dietary risks.
This is the purpose, for instance, of the PERICLES research program (PEsti-
cide Residue In vitro Combined Level of Exposure Study), recently launched by
the Anses to identify and quantify the risk due to the exposure to mixtures of
pesticides (Béchaux et al., 2013; Crépet and Tressou, 2011; Crépet et al., 2013;
Crépet et al., 2013). In terms of statistical analysis, thus reducing the dimen-
sion would also enable a more accurate estimation of the complex relationships
between these types of exposure. Indeed, even though they are clearly linked by
the type of food (fish or meat) introduced in the diet, there are differences of
composition between species — like tuna or salmon — that can imply indepen-
dence between types of extreme long-term exposure. In particular, exceedance
of the DIL of more than 3 of these elements are never observed in the data.
Because of the variety of individual dietary habits and the complexity of the
contamination process, simultaneous types of high exposure are not an obvious
phenomenon, are rarely observed, and need to be analyzed in detail.

6.1. Description of the data

Our vectors of 6 types of exposure were calculated on the n := 2488 non-
pregnant, non-lactating adults of the INCA2 database for which no important
variable was missing. Excluding pregnant and lactating women is due to the
specificity of their dietary needs, which significantly differ from those of the
rest of the population. INCA2 is a nation-wide survey conducted by the Anses
from 2005 to 2007 (Afssa, 2009). Carried out in collaboration with the French
National Institute of Statistics and Economic Studies (INSEE), it took inven-
tory of the amounts of 1342 foods eaten by 2624 adults during 7 consecutive
days. Hence, we consider weekly exposure. Levels of nutrients within each of
these 1342 food items were given in the CIQUAL database (Anses, 2008), and
equivalents for contaminants were found in TDS2 (Anses, 2011). Both tables re-
sult from surveys conducted by the Anses and were designed to match the food
nomenclature of INCA2. Then, by simply multiplying quantities of food with
the corresponding average amounts of chemical elements contained, we obtained
the vectors of exposure X;,...,X,, that are to be examined.

6.2. Analysis of extreme dependencies

We applied the DIMREDMEV() procedure of Algorithm 4 on the sample of ex-
posure X1,..., X, with hyper-parameters v* = 0.1 and v, = 1.5 x 1078 (the
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Fe Ca

Fic 4. Dependence structure between the 6 nutrients and contaminants of interest on
k* = 564; arrows indicate extreme dependencies and the number of observations within each
class is given in parentheses.

TABLE 5
Number of times extreme dependencies occur among all thresholds t = n/k,
k€ {10,...,|n x 0.3]} (in %)

MeHg MeHg & PCB-DL PCB-DL Cd Ca Fe & Na Na
7.60 97.15 45.32 95.52 78.83 50.88 48.85

default in R package skmeans). The resulting dependence structure is repre-
sented in Figure 4. To get further confidence in this outcome, we summarize in
Table 5 the strongest relationships that were found over all thresholds ¢ = n/k.
The evolution of T(k, M) with k is displayed on Figure 5. Here M refers to
the optimal number of clusters for fixed k defined on step 19 of Algorithm 4.
Our criterion reaches its maximum when & = 564, i.e. when calculations are
based on the 1591 observations with largest radii.

In fact, the dependence structure represented in Figure 4 is found on all 16
largest values of Y (k, M). The corresponding number of largest values k can
be divided into two groups, one where k is in a neighborhood of 360, and an-
other where k is around 560, as illustrated by the highlighted regions in Figure 5.
Moreover, Table 5 shows that some dependencies are spotted whatever the num-
ber of largest values. In particular, methylmercury is almost always associated
to PCB-DL, while cadmium and calcium get separated from all other chemicals.
Concerning iron and sodium, uncertainty remains quite high, and a complemen-
tary bivariate analysis seems necessary to confirm the nature of their relation-
ship. Figure 6 shows the estimated bivariate angular probability measures of
joint exposure first to MeHg and PCB-DL, then to Fe and Na. They were ob-
tained using the maximum empirical likelihood (abbreviated MEL) approach of
Einmahl and Segers (2009). Clearly, the strong asymptotic dependence between
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F1G 5. Evolution in log-scale of ?(k, My,) with the number of largest values k; the two dashed

lines indicate the location of T(k*, M*), while the grayed areas highlight regions where the 16
best criteria are obtained.
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Fic 6. MEL estimator of the bivariate angular probability measure Q, obtained for various
values of k (grey lines) up to k = 564 (black line), the optimal number of largest values
selected by our criterion; the horizontal dashed line represents asymptotic independence, and
the vertical one perfect asymptotic dependence.

methylmercury and PCB-DL is confirmed, on whatever value of k£ the estima-
tion may be carried out. The presence of a sub-population reaching extreme
exposure to PCB-DL alone is also suggested by the form of Q, which gets close
to vertical height on the extreme left part of the plot, for many values of k. How-
ever, methylmercury does not exhibit such a behavior, and given that a specific
class of independent exposure to MeHg only occurs for 7.60% of the largest val-
ues, we decide to disregard it. In terms of dietary habits, getting two clusters of
individuals, one highly exposed to both MeHg and PCB-DL and another solely
to PCB-DL, makes perfect sense. Contrary to PCB-DL, methylmercury is a
contaminant found exclusively in seafood products. Hence, it is possible to get
over-exposed to PCB-DL without ingesting high amounts of MeHg. As for iron
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and sodium, according to the evolution of Q with k shown on Figure 6, if these
two types of exposure exhibit asymptotic dependence, the latter is clearly weak.
In fact, we are more inclined to believe in the presence of a mixture of three
sub-populations, one ingesting high amounts of both Fe and Na, and the other
two getting over-exposed to only one of these nutrients. It is also possible that
k = 564 being quite high, the relationship appearing in Figure 4 corresponds
not to extreme but moderately high levels of exposures. This inconclusive exam-
ple suggests that extending our approach to the analysis of the hidden angular
measure (Resnick, 2002, 2008) would be of major interest.

7. Discussion

Non-parametric analysis of extreme dependencies via the angular measure in
high dimension d is still an open issue in multivariate extreme value theory.
Though the bivariate setting has already been thoroughly investigated (Beir-
lant et al., 2004; de Haan, 1985; Einmahl and Segers, 2009; Einmahl et al., 2001;
Guillotte et al., 2011; Resnick, 2007), and moderate dimensions are now acces-
sible when all variables are asymptotically dependent (Sabourin and Naveau,
2014), the matter is still unresolved for d > 5. Following in the footsteps of
Haug et al. (2009), who adapted Principal Components Analysis to extreme
dependence assessment, we proposed a method combining multivariate extreme
value theory with statistical learning and data mining standards so as to identify
sub-groups of variables exhibiting asymptotic dependence. Once these clusters
are identified, if they each encompass less than 5 variables, it becomes possible
to further estimate the corresponding sub-parts of the angular measure with
any existing method, for instance those cited herein-before.

We started in Section 3 by developing the theoretical context under which
our approach was constructed. In a non-parametric setting, we focused our at-
tention on the angular probability measure ). After recalling that it can be
viewed as the limit distribution of observation angles given that their radius is
getting infinitely large, we underlined the adequacy between the geometry of
its support on the positive orthant of the unit hypersphere and the nature of
extreme dependencies. Therefore, we proposed a natural model of the angular
probability measure as a mixture of angular distributions with supports on each
of the 2¢ — 1 non-empty open faces of the simplex. Tackled from a latent variable
point of view, this model provided particularly useful properties, formulated in
Proposition 3.1 and Proposition 3.2. In particular, we showed that open faces
intersecting the support of @, namely {2, h € H}, could be identified by means
of a simple functional x; 5 (t), 1 < j < d, h € Pq, introduced in Proposition 3.2.

Then, we moved to the practical part of our method in Section 4. Because we
had pinpointed the major role of geometry for analyzing angular measures in
the preceding section, we adopted geometrical techniques suited for Riemannian
objects such as the unit hypersphere for statistical inference. Borrowed from
the statistical learning field, they consist in first projecting the initial cloud of
points on a lower-dimensional space by means of the Principal Nested Spheres
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algorithm of Jung et al. (2012) to reduce the noise, then clustering the obtained
data with spherical k-means (Dhillon et al., 2002; Maitra and Ramler, 2010).
Resulting clusters were then used to assess H, the set of open faces that intersect
supp(Q). Heuristics were constructed based on the empirical counterpart of
the functional k; ;(t), in particular to select both the appropriate numbers of
groups of dependent variables and of “extreme” observations. Unfortunately, due
mainly to the absence of probabilistic analysis of PNS and spherical k-means
in the literature, we were not able to provide asymptotic results about the
aforementioned objects (this is the object of an ongoing work). Hence, assets and
liabilities of our technique were discussed based solely on numerical experiments.

In Section 5, we tested our method on a set of simulated databases. Three
scenarios were considered varying in dimension d, the number ##H of open faces
charged by the angular measure and the complexity of supp(@). In spite of
a clearly improvable practical algorithm, the encouraging results we obtained
enabled us to define which characteristics of ) have most influence on esti-
mation. In particular, we saw that unlike #H, d is of negligible importance
to the complexity of supp(Q)) and the strength of extreme dependence. The
closer {€,,h € H} are to one another (e.g. both Q({1,2}) and Q({2,3}) inter-
sect supp(Q)), the harder it seems to be to separate and correctly identify each
of them. Though they were not considered in the simulations, we added some
comments on rates of convergence to the asymptotic dependence structure that
were sensed as a determining factor in assessment efficiency. Specifically, we
insisted on the role that the hidden angular measure may play when selecting
an optimal number of largest values and suggested the interest of generalizing
our approach to its analysis. In fine, what emerged from these numerical ex-
periments is that improvement in the estimation of the angular measure can
be hoped for, provided that some regularity and sparsity hypotheses are ful-
filled.

Further insight into our method was provided by a case-study illustration.
Applied to real databases about exposures to 6 food contaminants, it produced
stable outcomes, thereby giving confidence in the results. We were able to con-
clude that only two pairs of chemicals are actually linked in extremes, namely
methylmercury and PCB-DL on the one hand, and iron and sodium on the other
hand. These associations were confirmed by further computing the MEL estima-
tor of Einmahl and Segers (2009) on these two pairs of variables. In addition, our
method spotted a configuration usually hard to notice with traditional estima-
tors, but quite natural given the underlying mixture model on which we based
the analysis: it underlined the presence of a mixture of populations, some being
jointly over-exposed to a couple of elements, while others ingest high quantities
of only one of them (PCB-DL or Na). In terms of public health implications,
this means that people who are over-exposed to methylmercury tend to ingest
simultaneously high amounts of dioxins and PCB. Knowing that these two tox-
icants have similar noxious effects on the human organism (Fischer et al., 2008;
Weihe et al., 1996), and that when combined, synergistic effects can occur (Be-
mis and Seegal, 1999; Carpenter et al., 2002), this suggests paying particular
attention to the populations that do not respect the corresponding DIL. It also
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justifies the need for specific research on potential combined effects of these two
contaminants, which would help in assessing the sanitary risks brought upon
the concerned population.

In view of these results, one advantage of our multivariate approach is that
people in the data are dispatched into multiple classes that embody different
types of extreme dependencies. In our case-study example, it facilitates the un-
derstanding of over-exposure categories by allowing classical discriminant anal-
yses. An interesting alternative would be to model the various 7, appearing in
the mixture model of the angular probability measure in function of auxiliary
covariates, e.g. some sociologic or economic variables here. More than providing
easily interpretable results, this would probably increase the performance of our
procedure by helping discriminate between the various clusters. Such general-
izations of the present work will be the subject of further investigation in the
near future.
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Appendix
A.1. Proof of Proposition 3.1

We shall start this proof by exhibiting two preliminary results. The first one,
given in the lemma below, states that 7, can be viewed as the limit probability
that A\ equals 1, h € Py, when the radius becomes infinitely large.

Lemma A.1. Consider the same framework as in Proposition 3.1, then for all

h € Pq,
P()\h=1|p>t) — Th.

t—>+x0

Proof. First of all, extend @ to the whole sphere by setting @ (S(Q)\Q) = 0,
then consider the following neighborhoods of each of the 2¢ — 1 open faces of
the simplex: for any € > 0, h € P and the geodesic distance ddel(., .) on £, set

Ve(Qp,) := {w € S(2) : inf {dé_l(w,x), X € Qh} < e}.
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We shall prove that for all h € P},

Jim P (we Vi) | 9> ) = Q V(). (A.16)
for an arbitrary small e. This result can be obtained by applying the Portman-
teau theorem to Eq. (9), provided that we find at least a decreasing sequence of
positive constants €1, €s,... that tends to 0 such that for any m > 1 and open
face Qy, the frontier of V. () has null measure relative to (). Since @ is a
finite measure, its associated cdf admits at most countably many discontinuity
sets, hence the requirement is met.

Now we shall prove that for all h € P},

lim Q (V. () = Q (). (A17)

where 2}, denotes the closure of 2, in Q. Observe that (V.(21,)) is a decreasing

sequence of sets that tends to €2, as € tends to 0. Therefore, Eq. (A.17) can be

deduced from the monotone continuity property of probability distributions.
By combining Eq. (A.16) and Eq. (A.17), we obtain for all h € P:

lim lim P (WeVe() | p=1t) =Q (). (A.18)

e—>0t—+w0

Now let D;, j € {1,...,d} denote the set {h € P} : #h = j}. We shall prove
Lemma A.1 by strong induction, starting with j = 1. First, observe that for all
h € D; we have Q, = 2, and that the events {\;, = 1, h € P4} are disjoint by
construction. Hence, for any h € D1, Eq. (A.18) can be rewritten as follows:

Q) =lim lim > P(weVe() |[p=t, v=1)P (N =1]p=1)

e—>0t—>+w0
LEPy

e—>0t—>+0

= lim lim (P(wEVE(Qh)|p>t,)\h=1)]P’()\h=1|p>t)

+ DI P(weVe() | p=t, )\g=1)P()\g=1|pZt)>.
LeEPy
£h
Since Eq. (12) ensures that lim;, 4o, P (w € Ve(Q) | p=t, Ay = ) = 1 for all
€ > 0 and that for all £ # h, lim._,q limy_, ;o P (w € V() | >t N ) =0,
we can conclude that
i 1 = > = i = > =
g dm P Ow =1]p2 1) = Lm P (= 1[p>1) = QW)
Lemma A.1 is thus true for all h € D;. Now fix some J € {2,...,d — 1} and
assume that it holds for all h € szl D;j. Set

)

— -
Fn = éEP;:QEEQh\Qh ,
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o]

where (2, denotes the reunion of all open subsets of €2j,. Using the same argu-
ments as before, for all h € Dy we have:

Q(ﬂ—h)=gg%tgg(xp(weve<m)|p>t, M= 1)P (M =1]p>1)
+ Y PweV)|p=t, =1)P(\=1|p>1t)
LEFH

+ Y P(we V()] p t,)\g=1)]P’()\g=1|p>t)>.
fff-;f
#

Invoking again Eq. (12), limy, 4P (w e Ve(Qy) |[p=1t, Ay =1) = 1 for all
€ > 0 and for all ¢ # h,

lim lim P(weV()|p=t, A =1) =

e—>0t—>+w0

1 ifle Fy,
0 ifl¢ Fy.

Combined with the induction hypothesis, these equations entail

tllmp(h—1|p Zﬂg—ﬂh
o ée]—'h

Now that we have proved Lemma A.1 for all h € P}, there remains to check
that limy—, 1, P(Agy =1| p =t) = my = 0. By construction the distribution of
A is Categorical with parameters (pp)nep,, therefore the events {\;, = 1}pep,
are mutually exclusive and {Ag = 0} = UheP;{)‘h = 1}. As a result, we have:

PAg=1]p=2t)=1-PAyg=0|p=t)=1-P U{)\h=1}‘p>t
heP}
=1- Y P=1|p=2t) — 1— ) m=mg=0.

t—+40
heP} heP}

This concludes the proof. O

The second preliminary result in the lemma below states that the distribution
of vector Z given that A\p, = 1 is multivariate regularly varying when h € H.

Lemma A.2. Consider the same framework as in Proposition 3.1, then for all
h € H, there is a Radon measure uyp, non identically zero and not degenerate at
a point, concentrated on the blunt convex cone Cp, := {x € Cx : X/||x(2) € Qn},
such that

tP(%e.|/\h=1> 5 un(l).

—>+0
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Proof. By Lemma A.1, Eq. (8) and Eq. (12), we have that

S( N Qh)/ph if he ’H,

t—+%0 0 otherwise,

tP(we.,p>t|/\h=1) BN Sh(.)SZ{

where by definition,

S(nQn) =p({xeC:|x]a) =1, x/|x]|@) €. nQ})
=p({xeCu:xla) =1, x/|x]@) €}
Nn{x € C: x/|x](2) € U}) .

Recall that Cp, := {x € Cys : x/||x[(2) € 21}, and set
.nC ifheH
iy o G0 '
0 otherwise,
then we can rewrite S in function of uj as below:
Sn() = m({x €l [x]a) =1, x/[x[2) €. }).

Since Cy, is a cone, the homogeneity property of u stated in Eq. (4) is passed on
th, h € H. Indeed, for all 0 < s < 400 and Borel subsets B of C,,

pn (s B) = i ((s B) 0 (Cn)) /pn = (s (B 0 Ch)) /pn
=s"'u(BnC)/pn=5"un(B).
According to Theorem 6.1 in Resnick (2007), it naturally follows that

+o00

Z v
tP (? €. | Ap = 1) t_) /J,h(.),

where, just like u, pp can be written as the product of a measure on the radius
with a measure on the angles when switching to pseudo-polar coordinates:
Uh oT™ ! = H_q1 X Sh.
O

We can now tackle the proof of Proposition 3.1. Going back to the marginal
level, multivariate regular variation of conditional distributions gives for all
x> 1,1<j5<d,

tP §>x|)\ =1)] > wm({zelC:z >1})
t h = t—+0 Fh e ’

Notice that we now have a null limit for all A ¢ H(j). Furthermore, for all
h € H(j), we have

prn({z€Cu:z; >x}) = L J { Hw”(l) > 3:} p—1(dp) Sp(dw)
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:x*lf YISy (dw) .
a lwlq)
[ S ——

Cj,h

Hence, for all h € Py, j € {1,...,d}, z = 1, we can write
tP(Z; > xt | Ap =1) e cjnr L

where ¢;;, > 0 when h € H(j), and ¢;, = 0 otherwise. Based on the marginal
constraints on S stated in Eq. (10) and because {2, }rep, forms a partition of 2,
we have that ¢; 5, € [0, 1/pp] for all h € P4 and Zhepd Dh Cj,h =ZheH(j) prcjn=1.

A.2. Proof of Proposition 3.2

We shall handle the situations where h € H(j) and h ¢ H(j) separately. To
simplify notations, for all h € Py and = > 0 we will denote by F}(z) the
conditional probability that Z; exceeds = given \j equals 1:

Fin(x) =P (Z; >z | =1).

® heH(j):pr#0and 7, #0

From Eq. (13) in Proposition 3.1, it is straightforward that F}, is regularly
varying with index —1, i.e. for any x > 1,

Fzyh(It) N :E_l.
Fj,h(t) t—+w
Hence, F};, may be written as follows:
Fjn(x) = 27" Ljn(x),

where L, 5 (z) is a slowly varying function (V s > 0, L; (s ©)/L;j n(®)—z—>+x1)
that converges to ¢, as r — +00.

Remark A.l. Define z7, := inf{z > 1: Fj p(x) = 0}, the right endpoint of
the survival function F}, for any j € {1,...,d} and any h € Pg. Then for all
h e H(j), zj ), = +oo, that is Vt = 1, Fjn(t) > 0.

Since Bayes’ formula gives
+%
#j.h (1) ?=J tP(p=t)P(Z;>at|p=t, N =1) dz
1

_ i Dh
PA=1]|p=t)

J-l-OO]P)(Z >axt, p= t|)\h—1)d
and for all z > 1P(Zj>xt t|)\h—1) Fjp(xt), we have

Kjn(t) = Zh
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__ Lin@pn J”"x_l Lin(zt)
P()\hzl |P>t) 1 Ljn(t)

Fix some e > 0, small enough to verify c¢;, — € > 0, and some t. > 0 such that
YVt > t., we have simultaneously |]P’ (/\h =1 | p= t) —7rh| < ¢ (Lemma A.1) and
|L(t) — ¢;,n| < e. Obviously, as soon as ¢ > t., we also have |L(xt) — ;5| < € for
allz > 1, and

Cjn — € LjJL(.’L' t)

0< .
Cjh T € Ljﬁh(t)

Hence, Vt > t.,

L 2 +o0
Kin(t) > (cjun = )" ph J xldr = +oo,
(mh + €)(cjn +€) Jy

or equivalently x; p(t)— -4 + 0.

o heH\H(j): pn#0and 7, #0

Contrary to the case where h € H(j), the conditional cdf Fj j, can have either
finite or infinite right endpoint. When its support is bounded, relying on the
Bayes decomposition exhibited in the previous paragraph, the desired result
is straightforward: because there exists some ¢y > 1 such that for all ¢t > ¢,
Fj,h(t) = 0, then as ¢ — +00, the integral also becomes null. If on the contrary,

F;n > 0forallt > 1, then, as previously, we can rewrite the quantity of interest
in the following form:

tphpjﬁh(t) J-+7' Fjﬁ(xt)d
)l

/\h=1|p>t F

l{j,h(t) = ]P)( Fj,h(t)

Since as ¢ tends to infinity ¢ Fj ,(t) tends to 0 (Proposition 3.1), P (Ain | pi = t)
tends to 7, > 0 (Lemma A.1) and since pp > 0, for the integral of interest to
converge to 0 it suffices to prove that there exists some ¢ty > 1 such that for all
t > to,

dxr < 400.

J+I ijh(a: t)
1 Fia()

According to the assumption in Proposition 3.2, there exists some constants
v*€(0,1), ¢* = 0 and t* > 1 such that

Fh(xt) _1 *)
t>1) = | 2L o)
( ) (th(f)

Hence, for all ¢ > ¢*,

O (wt e . —c
Mdmﬁc*f Al da:=76<+oo,
1 F]h(t) 1 1_1/7*

which produces the desired outcome.
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e hé¢ Hu{g}:iph=m=0
By definition, for all h € P}, the equivalence below holds true:
(he HA\{D}) < (mn = 0) < (pn = 0).
Consequently, when h ¢ H U {}, we have P (Zj > | p=t, A\ = 1) = 0 for
all z > 0, and by extension
+0
J tP(p=t)P(Z;>at|p=t, Ap=1) dx =0,
1

for all ¢ > 0. This remains true as t — +oo.

e h=:p,#0and 7, =0
Let us start again with the following decomposition:

P 0
Pg=1]p>0

Fjo(t)

Contrary to the case where h € H\H(j), we cannot guarantee the convergence
of kj(t) to 0 as t grows to infinity, since P ()\@ =1 | p = t) now tends to 0
instead of a positive constant. Nonetheless, it is still possible to prove that it
does not diverge to +oo. Indeed, notice that

tpg Fig(t) _ tP(p>1t) Fg(t)
P(Ag=1|p=t) Pp=t|rg=1)

and that Fj g(t) <P (p =t | Ag =1). Hence,

+0 7
F'g(xt)

Kj, (t)$tP(p>t)f —L2 2 da.

e 0]

We have already seen that according to the assumption in Proposition 3.2, there
exists some constants v* € (0,1), ¢* = 0 and ¢* > 1 such that for all ¢t > ¢*,

+0 . _x
J Fjg(xt) dr < c
1

= x < .
Fy(t) L—1/y

Moreover, by virtue of Eq. (8), for all € > 0 there exists some t. > 0 such that for
allt > t., [tP (p = t) — S(Q)| < e. Fix some € > 0 and set €* := —e (1 — 1/4%)/c*,
then for all ¢ > max(t*,t.), we have
—S(Q)c*
L—1/y*
Observe that the smaller v*, i.e. the faster the limit dependence structure is
reached, the smaller the bound of ;g (t). Ideally, when all F; &, 1 < j < d,
are rapidly varying, i.e. ¢* = 0, we obtain the same result as in the case where
h € H\H(j). This would correspond in fact to the absence of hidden regular

variation, like mentioned in Section 5 and Section 7 (Heffernan and Resnick,
2005; Resnick, 2002, 2008).

Kjg(t) < + € < 4o0.
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A.3. About f/ﬁ\)j’g(k)

For the sake of clarity, we give here a more explicit version of the statistic
Kjm(k), which was defined for all 1<m <M, 1<j<das

Rjm (k) == £+”’~ En. Z H{Z‘,j >z %, Iim = 1} dx,

where ny 1= #Xy, is the number of observations the radius of which exceeds n/k,
and nm 1= >y, I{Zi,m = 1} the size of class m. Recall that m is supposed to
refer to some h € P} via the function far(m). Let us begin by considering that
k is fixed, and set

Gim(z) = — & ZH{2i7j>x%,1@m=1}, l<m<M, 1<j<d

1EN

Our statistic of interest, k; (k) is none other than the integral over z > 1 of
g;,m (). Actually, because it relies on a finite set of n < 1 observations, g, m (z)

is a step function with support on [mini<i<n éi,j k/n,maxlsi<n2i7j k/n]. As

g;,m only takes into account observations verifying I; ,, = 1, we denote by
(Z1%, -, Z, ;) the sub-sample of n,, observations within (Z1j,..., Zn ;), for

any j € {1,...,d}. Denote by 261]‘) <...< ézzm ;) the corresponding ordered
statistics and consider

~ ) N . R n
Zzzm—u*,j) =1nf{ZZZ71 SZ Snm : ZZ’,;T.; 2 E}’
the smallest observation 2{’3 that exceeds n/k. Arbitrarily set 2(":1 w1y = 1,

then g;.» can be expressed as follows:

1 nyg u! Sm kE s, k
gim() = ¢ . 21 ulyw e | 2, —ug) o Linn—urtg) ;) (-
In particular, when = > 2(727” J) k/n, there is no Z";, 1 < i < nyy, such that
2{’3 k/n > x, and conversely, when = € [1,2(":%71” i) k/n), there are exactly

u* + 1 observations 21"; in the sub-sample defined by I;, = 1 that exceed

xn/k. Therefore, the integral of g; ,,(z) over all z > 1 verifies

lrgnlaécnén k/n
| 5m (@) o = Ry (1)
1

w*+1
Nk 1 (,\ ~
=0k - Zm _gm ) .
n Nm ’U,Z::l u (nm—u+1,5) (Mm —u,7)
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