. Afssa, Individual and National Study on Food Consumption Summary and full report at https://www.anses.fr/ sites, 2006.

. Anses, French food composition table Official webpage https, 2008.

. Anses, Second French Total Diet Study (TDS 2), 2011.

C. Béchaux, M. Zetlaoui, J. Tressou, J. C. Leblanc, F. Héraud et al., Identification of pesticide mixtures and connection between combined exposure and diet, Food and Chemical Toxicology, vol.59, pp.191-198, 2013.
DOI : 10.1016/j.fct.2013.06.006

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of extremes: theory and applications, 2004.
DOI : 10.1002/0470012382

J. C. Bemis and R. F. Seegal, Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro, Environmental Health Perspectives, vol.107, issue.11, p.879, 1999.
DOI : 10.1289/ehp.99107879

M. O. Boldi and A. C. Davison, A mixture model for multivariate extremes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.39, issue.2, pp.217-229, 2002.
DOI : 10.1111/1467-9868.00095

R. B. Cattell, The Scree Test For The Number Of Factors, Multivariate Behavioral Research, vol.1, issue.2, pp.245-276, 1966.
DOI : 10.1207/s15327906mbr0102_10

A. Crépet, J. Tressou, A. Crépet, F. Héraud, C. Béchaux et al., Bayesian nonparametric model with clustering individual co-exposure to pesticides found in the French diet, Bayesian Analysis, vol.6, issue.1, pp.127-144, 2011.
DOI : 10.1214/11-BA604

A. Crépet, J. Tressou, V. Graillot, . Béchaux, S. Pierlot et al., Identification of the main pesticide residue mixtures to which the French population is exposed, Environmental Research, vol.126, pp.125-133, 2013.
DOI : 10.1016/j.envres.2013.03.008

B. Das and S. I. Resnick, Detecting a conditional extreme value model, Extremes, vol.48, issue.1, pp.29-61, 2011.
DOI : 10.1007/s10687-009-0097-3

B. Das, A. Mitra, and S. I. Resnick, Living on the Multidimensional Edge: Seeking Hidden Risks Using Regular Variation, Advances in Applied Probability, vol.7, issue.01, pp.139-163, 2013.
DOI : 10.3150/10-BEJ271

L. De-haan, Extremes in higher dimensions: the model and some statistics, Proceedings 45th Session of the I.S.I. paper 26.3, p.886266, 1985.

L. De-haan and A. Ferreira, Extreme value theory: an introduction, 2006.
DOI : 10.1007/0-387-34471-3

I. S. Dhillon, Y. Guan, and J. Kogan, Iterative clustering of high dimensional text data augmented by local search, 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp.131-138, 2000.
DOI : 10.1109/ICDM.2002.1183895

J. H. Einmahl, J. Segers, J. H. Einmahl, L. De-haan, V. I. Piterbarg et al., Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribution Nonparametric estimation of the spectral measure of an extreme value distribution Neonatal co-exposure to low doses of an ortho-PCB (PCB 153) and methylmercury exacerbate defective developmental neurobehavior in mice, Ann. Statist. Ann. Statist. Toxicology, vol.37, issue.244, pp.2953-29891401, 2001.

P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi, Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape, IEEE Transactions on Medical Imaging, vol.23, issue.8, pp.995-1005, 2004.
DOI : 10.1109/TMI.2004.831793

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, 2009.

S. Guillotte, F. Perron, and J. Segers, Non-parametric Bayesian inference on bivariate extremes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.22, issue.3, pp.377-406, 2011.
DOI : 10.1111/j.1467-9868.2010.00770.x

S. Haug, C. Klüppelberg, and G. Kuhn, Dimension reduction based on extreme dependence, 2009.

J. Heffernan, S. I. Resnick, and H. Ziezold, Hidden regular variation and the rank transform, Advances in Applied Probability, vol.13, issue.02, pp.393-41499, 2005.
DOI : 10.2307/1427870

P. Jenner, A. H. Schapira, and C. D. Marsden, New insights into the cause of Parkinson's disease, Neurology, vol.42, issue.12, p.422241, 1992.
DOI : 10.1212/WNL.42.12.2241

S. Jung, M. Foskey, and J. S. And-marron, Principal arc analysis on direct product manifolds, The Annals of Applied Statistics, vol.5, issue.1, pp.578-603, 2011.
DOI : 10.1214/10-AOAS370

S. Jung, I. L. Dryden, and J. S. And-marron, Analysis of principal nested spheres, Biometrika, vol.99, issue.3, pp.551-568, 2012.
DOI : 10.1093/biomet/ass022

R. Maitra and I. P. Ramler, -mean-directions Algorithm for Fast Clustering of Data on the Sphere, Journal of Computational and Graphical Statistics, vol.19, issue.2, pp.377-396, 2010.
DOI : 10.1198/jcgs.2009.08155

URL : https://hal.archives-ouvertes.fr/inria-00607276

P. Massart, G. Mclachlan, D. Peel, M. J. Paulo, H. Van-der-voet et al., Strong approximation for multivariate empirical and related processes, via KMT constructions Finite mixture models Analysis of multivariate extreme intakes of food chemicals, Ann. Probab. Food Chem. Toxicol, vol.17, issue.2997, pp.266-291, 1989.

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence, Extremes, vol.5, issue.4, pp.303-336, 2002.
DOI : 10.1023/A:1025148622954

S. I. Resnick, Heavy-tail phenomena: probabilistic and statistical modeling, 2007.

S. I. Resnick, Multivariate regular variation on cones: application to extreme values, hidden regular variation and conditioned limit laws, Stochastics An International Journal of Probability and Stochastic Processes, vol.40, issue.2-3, pp.269-298, 2008.
DOI : 10.1007/BF01682329

A. Sabourin, P. Naveau, A. Stephenson, J. Tressou, A. Crépet et al., Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization, Computational Statistics & Data Analysis, vol.71, issue.618, pp.542-56749, 2003.
DOI : 10.1016/j.csda.2013.04.021

URL : https://hal.archives-ouvertes.fr/hal-00880879

P. Weihe, P. Grandjean, F. Debes, and R. White, Health implications for Faroe Islanders of heavy metals and PCBs from pilot whales, Science of The Total Environment, vol.186, issue.1-2, pp.141-148, 1996.
DOI : 10.1016/0048-9697(96)05094-2