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Abstract 

 

In regions impacted by mining and smelting activities, dredged sediments are often 

contaminated with metals. Phytotechnologies could be used for their management, but more 

knowledge on the speciation of metals in the sediment and on their fate after colonization by 

plant roots is needed. This work was focused on a Zn, Cd-contaminated contaminated 

dredged sediment from the Scarpe river (North of France). Zn, Cd hyperaccumulating plants 

Arabidopsis halleri from metallicolous and non metallicolous origin were grown on the 

sediment for five months in a pot experiment. The nature and extent of the modifications in 

Cd speciation with or without plant were determined by electron microscopy, micro X-ray 

fluorescence and bulk and micro X-ray absorption spectroscopy. In addition, changes in Cd 

exchangeable and bioavailable pools were evaluated, and Cd content in leachates was 

measured. Finally, Cd plant uptake and plant growth parameters were monitored. In the 

original sediment, Cd was present as a mixed Zn, Cd, Fe sulfide. After five months, although 

pots still contained reduced sulfur, Cd-bearing sulfides were totally oxidized in vegetated 

pots, whereas a minor fraction (8%) was still present in non vegetated ones. Secondary 

species included Cd bound to O-containing groups of organic matter and Cd phosphates. Cd 

exchangeability and bioavailability were relatively low and did not increase during changes in 

Cd speciation, suggesting that Cd released by sulfide oxidation was readily taken up with 

strong interactions with organic matter and phosphate ligands. Thus, the composition of the 

sediment, the oxic conditions and the rhizospheric activity (regardless of the plant origin) 

created favourable conditions for Cd stabilization. However, it should be kept in mind that 

returning to anoxic conditions may change Cd speciation, so the species formed cannot be 

considered as stable on the long term.   

 

 

1. Introduction 

 

The North of France hosts one of the oldest and largest industrial areas in Europe, with a large 

concentration of non-ferrous metal processing activities. The Scarpe river is strongly 
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impacted by these activities, and sediments are contaminated by many metals including Zn 

(about 7000 mg kg-1) (Isaure et al., 2002) and Cd (about 600 mg kg-1) (Alary and Demougeot-

Renard, 2008). The maintenance of waterways such as the Scarpe river by regular dredging 

generates large volumes of metal-polluted sediments. Land disposal of these sediments may 

present some risks in the environment. Sediments with contaminant levels above guidelines 

are usually stored in landfill sites. Over the last decade, a substantial body of research has 

been conducted on the fate of metals in the lower Scarpe river. Studies have focussed on the 

speciation of Zn (Isaure et al., 2002; Isaure et al., 2005) and other metals (Thiry et al., 2002) 

and on their availability (Piou et al., 2009; Lions et al., 2010). Chemical extractions suggested 

that Cd was mostly present in the oxidable fraction, likely polymetallic sulfides, but no direct 

methods such as EXAFS spectroscopy was used to determine Cd overall speciation in this 

sediment. Chemical extractions suggested that after land disposal of the sediment, the sulfidic 

pool progressively decreased in favour of exchangeable forms (Piou et al., 2009). Secondary 

Cd species formed after release of Cd2+ in a soil may include O-coordinated Cd adsorbed to 

iron oxihydroxides, clay minerals, carbonates and COOH/OH groups of organic matter, and 

S-coordinated Cd complexed by reduced organic S groups of natural organic matter or 

bacterial cell walls or Cd adsorbed to metal sulfides (O’Day et al., 1998; Karlsson et al., 2005, 

2007; Sajidu et al., 2008; Mishra et al., 2010; Fulda et al., 2013). To our knowledge, there is 

no study on Cd speciation in dredged sediments after land disposal using direct methods.  

Phytotechnologies have been proposed as alternative management methods for these 

sediments (Bert et al. 2009; Bolan et al., 2011). In a previous work, the fate of Zn after a 

phytostabilization treatment with graminaceous plants was studied (Panfili et al, 2005). 

Results showed a clear impact of the rhizospheric activity on Zn speciation, regardless of the 

plant species (Festuca rubra or Agrostis tenuis) and of the addition of amendments. Zn 

sulfide, present as major Zn species in the original sediment, was almost completely oxidized 

and replaced by secondary forms including Zn phosphate, Zn phyllosilicates and Zn-sorbed 

ferrihydrite. The rhizosphere is a zone of intense and dynamic exchanges between the soil, the 

root, and the microbial and fungal communities which colonize this zone. Exchanges in gas, 

water, solutes, large and small organic molecules are supposed to influence the chemistry of 

metals, although it is difficult to know exactly the role of each parameter in this complex 

interplay (Hinsinger et al., 2006; Wenzel 2009). The rhizosphere of metal hyperaccumulating 

plants has been the subject of many studies. Enhanced metal uptake by these species does not 

seem to be related to specific phenomena, but to the enhancement of processes common with 

non-accumulators. They include a highly developed root system, enhanced transport activity 
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at the soil-root interface, and possibly enhanced release (or release of different types) of 

organic ligands (Wenzel, 2003; Li et al., 2013, Tsednee et al., 2014). A. halleri is a model of 

Zn, Cd hyperaccumulating plant, and it has been intensively studied for the genetics and 

physiology of metal tolerance and hyperaccumulation (Roosens et al., 2008; Sarret et al., 

2009; Huguet et al., 2012; Verbruggen et al, 2013; Isaure et al., 2015; Meyer et al., 2015). It is 

a pseudo-metallophyte, which means that it is found both on metal-rich and normal 

environments. Previous studies suggested some variations in metal tolerance and 

accumulation between and within populations (Meyer et al., 2010; Meyer et al. 2015). Despite 

these numerous studies, data concerning the impact of A. halleri on the speciation and 

availability of Cd in the soil are lacking. 

The aim of this work was to determine the speciation of Cd in a dredged sediment, to assess 

its fate after land disposal, and to evaluate the influence of the rhizospheric activity on Cd 

speciation. The Cd tolerant and hyperaccumulating species A. halleri was chosen as model 

plant for this study because this species is naturally present in metal-contaminated soils of this 

studied area. Moreover, we have some knowledge on Zn and Cd tolerance and accumulation 

(Sarret et al., 2009 and Isaure et al., 2015, respectively), and on rhizospheric processes 

(Barillot et al., 2013) for A. halleri from the same metallicolous origin. Thus, this species was 

not chosen as a candidate for phytoextraction (which it is not), but as a model plant to study 

rhizospheric processes. 

Information on Cd solid phase speciation, on Cd extractability and leachate composition, and 

on Cd transfer in the plant was obtained. Such combined approach provides key information 

on metal dynamics in soil–plant system both on the short and long term. Such knowledge is 

essential for the management and phytomanagement of dredged sediments after land disposal. 

In this aim, a 5-month pot experiment was conducted on a  Zn- and Cd-contaminated dredged 

sediment with A. halleri of two origins, metallicolous (MET) and non-metallicolous (N-

MET). Plants originating from a contaminated site and a non contaminated site were 

compared to examine potential differences between MET and N-MET plants in Cd uptake 

and Cd behaviour in rhizosphere. The speciation of cadmium in the sediment before and after 

culture and its relationships with other elements were studied by a combination of bulk and 

microanalyses including scanning electron microscopy coupled with energy dispersive 

spectroscopy (SEM-EDS), micro X-ray fluorescence (µXRF) coupled with Cd LIII-edge and S 

K-edge micro X-ray absorption near edge structure (µXANES) spectroscopy, and bulk Cd K-

edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The mobility and 

bioavailability of cadmium in the sediment were studied by Ca(NO3)2 extractions and 
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diffusive gradient in thin films (DGT), and measurement of Cd content in the leachates. In 

addition, plant growth parameters and Cd accumulation were monitored.  

 

2. Materials and methods 

 

2.1 Sediment  

 

The sediment was collected from the lower Scarpe river in the North of France (about 30 km 

south of Lille). In this study, 500 kg of surface sediment from an area containing 150 mg kg-1 

Cd (Alary, 2001) were dredged with a mechanic shovel. The sediment was then mixed, spread 

as a 20 cm-thick layer and dried outdoor for 7 months until the water content was 20 % in 

mass. The sediment was mechanically homogenized several times and sieved (< 5 mm with a 

Cross Beater Mill SK – RETSCH). Characteristics of the sediment at this time, “initial time” 

ti (Fig. 1), just before plant culture, are given in Table 1. Particle size distribution was 

analyzed following methods described in Isaure et al. (2002). Pseudo-total elements 

concentrations (Cd, Zn, Cu, Pb, Ni, and As) were quantified in sediment and in the different 

granulometric fractions. Aliquots of 0,5 g of samples were dried and sieved (100µm) and then 

digested by aqua regia micro-waves assisted dissolution. Metal concentrations were 

determined by ICP-AES. Quality control was based on the use of sediment certified standard 

samples (NWRI TH-2) and internal control samples.  

The pH of the sediment before culture was about 7.48 ± 0.01. The sediment was relatively 

rich in organic matter and had a relatively high cation exchange capacity (Table 1). As 

expected the metal concentrations in sediment were high with 141 ± 24 mg kg-1 Cd, and other 

metals (Table 1). The Cd content was higher in finest fractions (e.g. 290 ± 10 mg kg-1 Cd for 

<2µm fraction). Sediment was mainly composed by <50 µm fractions (Table 1), which 

concentrated 72 % Cd. 

 

2.2 Plant material  

 

A. halleri develops natural populations on both metal contaminated and uncontaminated soils 

in Europe (Bert et al., 2002). Viable seeds of A. halleri were collected in a smelter-impacted 

site (Bois des Asturies - Auby, France) and in an uncontaminated site (Hautes Fagnes, 

Belgium). The soil of Bois des Asturies has been characterized in several studies (Bert et al., 

2000; Cuny et al., 2004; Sarret et al., 2004; Pauwels et al., 2006; Farinati et al., 2011; Gomez-
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Balderas et al. 2014). The data from Sarret et al. (2004) are given in Figure SI-1. The topsoil 

(0-20 cm) in which A. halleri developped roots was collected, and characterized as previously 

described for the sediment (Fig. SI-1). 

 

2.3 Pot experiment  

 

After vernalisation, A. halleri seeds were germinated on filter papers moistened with 

deionized water. Seedlings were transferred to pots filled with compost and grown for 4 

weeks. Just before transfer on sediment (at ti – Fig. 1), metals concentrations in aerial parts of 

A. halleri seedlings of both origins were analysed. Seedlings of A. halleri from metallicolous 

(MET) and non metallicolous (N-MET) origin were transferred to 4 L pots containing 2,8 kg 

of 5 mm-sieved sediment after roots had been washed carefully with deionised water. The 

monitoring of the culture was started after a 3-weeks period of adaptation to the new substrate 

(at t0). Non vegetated pots were used as control, and each vegetated pot contained one 

seedling. A total of 39 pots were used, including 3 for the control and 18 for each origin of A. 

halleri (a triplicate for each sampling time, t0 to t5). Sediment moisture was maintained at 

80% field water capacity by regular addition of deionised water. Plants were grown for five 

months in controlled conditions (12h photo period, 20/16°C day/night temperature, 80 % 

relative humidity) and pots were moved randomly each week.  

 

2.4 Microscopic and spectroscopic analyses of the sediment before and after culture  

 

Cd localization in the sediment was studied by SEM-EDS and µXRF. Cd speciation was 

studied by Cd K-edge bulk EXAFS spectroscopy and Cd LIII-edge µXANES spectroscopy, 

and S speciation was determined by S K-edge µXANES spectroscopy. 

 

2.4.1 Sample preparation 

Undisturbed blocks of sediments were collected from the pots before and after culture with 

MET and N-MET plants. Rhizosphere blocks were then freeze-dried, impregnated with epoxy 

resin, and prepared as 30 µm-thick micro-polished thin sections for electron and X-ray 

analyses (SEM-EDS, µXRF and µXANES). For bulk analyses, other blocks from pots with or 

without plant were collected. Roots were removed, and the substrate was freeze-dried, ground 

and pressed as pellets. 
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2.4.2 Reference compounds 

The XANES and EXAFS analysis was based on a large database of reference Cd-containing 

compounds. They included commercial Cd minerals, Cd-containing compounds prepared at 

the laboratory and natural samples. Purchased chemicals used were all ACS reagent or 

analytical grade quality. The database included CdS, CdCl2, CdCO3, Cd(NO3)2, CdO, 

Cd(OH)2, Cd-phosphate (Cd5H2(PO4)4, 4H2O), CdSO4, Cd-sorbed goethite and Cd-sorbed 

ferrihydrite containing ~8000 mg kg-1 Cd kindly provided by A. Voegelin (Fulda et al., 2013), 

and a mixed sulfide (Zn, Cd, Fe)S extracted from a metamorphic rock was used as well. It 

was composed of sphalerite enriched in Cd and Fe (XRD spectrum in Figure SI-2 – Cd 

content: 1350 ppm). In addition, a library of Cd-organic complexes including Cd-malate, Cd-

citrate, Cd-succinate, Cd-alginate, Cd-histidine, Cd-cysteine, Cd-glutathione, Cd-PC2, Cd-

oxalate, Cd-cellulose, Cd-pectin, already described by Isaure et al. (2006, 2015) and Huguet 

et al. (2012) was used. Two more reference compounds included Cd with three organic acids 

in solution (Cd-OAs, 5mM Cd, 14mM citrate, 100mM malate and 400 mM succinate at 

pH=5.5 - concentrations were chosen according to PHREEQC calculation to have equivalent 

concentrations of  (Cdsuc2)
2-, Cdsuc, (Cdcit2)

4-, (Cdcit)-, Cd2+, Cdmal complexes); and free 

Cd2+ (10mM Cd2+ at pH = 2.2). Solid state references were diluted in boron nitride and 

pressed as 5 mm diameter pellets. All solutions reference compounds were mixed with 20% 

glycerol to prevent ice crystal formation during cooling. Spectra for all Cd-containing 

references were recorded at Cd K-edge and LIII-edge. For S K-edge XANES analyses, the 

database presented in Sarret et al. (1999) was used.  

 

2.4.3 Data acquisition  

Micro-analyses were performed on thin sections of sediment samples. Cd-rich regions and 

geochemical associations were first investigated by environmental SEM-EDS. For the 

sediment before culture, we used a Quanta 200, FEI interfaced with a RONTEC single Drift 

detector. The chamber pressure was 0.45 Torr and the accelerating voltage 20 kV. Ten Cd-

rich regions areas were identified. For the sediment after culture, we used a Hitachi S-4300 

environmental scanning electron microscope with Thermo Ultradry Silicon Drift detector, 

using an acceleration voltage of 20 kV and pressure was 3990 Torr (30 Pa). Twelve Cd-rich 

regions areas were analyzed (6 for sediment with MET plants and 6 for sediment with N-

MET plants). µXRF and µXANES analyses were performed on beamline LUCIA (SLS, 

Villigen, Switzerland) equipped with Si (111) crystals and a SDD fluorescence detector, with 

a beam size of 2.5 x 5 µm on the sample and at room temperature. Regions of interest 
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identified by SEM were mapped by µXRF before recording Cd LIII-edge (3538 eV) and S K-

edge (2472 eV) µXANES spectra. For each sample, 6 to 8 XANES scans of 20 min were 

averaged. Cd LIII-edge and S K-edge XANES spectra were also recorded in unfocused mode 

on various Cd- and S-containing references (see above). For reference compounds, 2 to 3 

spectra were averaged.  

Cd K-edge bulk EXAFS measurements were performed on sediment samples on the beamline 

FAME (BM30B – Proux et al., 2006) at the European Synchrotron Radiation Facility (ESRF, 

Grenoble, France) equipped with a Si (220) double crystal monochromator. Pellets of 

sediment samples and reference compounds (pellets and solutions) were transferred in a liquid 

He cryostat cooled to 15 K. Spectra were recorded in fluorescence mode using a 30-element 

solid-state Ge detector (Canberra). For each sample, 10 to 17 scans of 40 min were averaged. 

 

2.4.4 µXRF and XAS data treatment 

For µXRF elementary maps, fluorescence intensities were normalized by the incident photon 

intensity (I0) and counting time. XAS spectra were treated using ATHENA (Ravel, 2009) 

software. The calibration of energy was done using a metal foil reference by setting the first 

inflexion position of Cd-metal XANES spectrum to the tabulated value of 26711 eV; the 

contribution of the matrix was subtracted and a normalization of signal was done using a 

linear or a two-degree polynomial. The extracted EXAFS was then k
3-weighted to enhance 

the high-k region, and Fourier-transformed (FT) over the k range 3.0 to 10.5–13 Ǻ-1, 

depending on the level of noise. The proportions of Cd species in sediment samples were 

obtained by least-squares fitting of recorded spectra to linear combinations of reference 

spectra from a library of Cd model compounds including Cd-substituted and Cd-sorbed 

minerals and Cd-complexed organic compounds (see above). For each spectrum, LCFs using 

one, two and three components were tested successively. The fit with n+1 components was 

retained if the normalized sum-squares residual (NSS = ∑[k3 cexp - k
3 cfit]

2 ⁄∑[k3 cexp]
2 100) 

was decreased by more than 10 % as compared to the fit with n components. Percentages of 

Cd species are given as average and standard deviations presented are the average over 

satisfactory fits, defined by NSS comprised between the value obtained for the best fit 

(NSSbest) and 1.1 NSSbest.  

In parallel, from k3 EXAFS spectra, the structural parameters for Cd reference compounds and 

sediment samples were determined by shell simulations using ARTEMIS (Ravel & Newville, 

2005). Phase and amplitude functions were calculated by FEFF 6.0 using the structure of 

greenockite (CdS) and cernyite (Cu2(Cd0.37Zn0.33Fe0.29)SnS4) (Szymanski, 1978), Cd-organic 
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structures from the Cambridge Structural Database (CSD, Bruno et al., 2002) and the 

structure of Cd5H2(PO4)4, 4H2O. EXAFS spectra were Fourier transformed over a k range of 

3.2–11 Å for sediment samples, and the contribution of the first shell was simulated in R 

space, either with O atoms only, or with O and S atoms.  

S K-edge XANES spectra were treated by LCFs as described above. S reference compounds 

were grouped into three families: mineral sulfides (including CdS and (Zn, Cd, Fe)S), organic 

sulfides (including R-SH, R-S-R and R-S-S-R groups) and oxidized sulfur (including 

sulfoxides, sulfone, sulfonic acid, and sulfates). 

 

2.5 Monitoring of Cd in sediment, plant and leachates 

 

A monthly monitoring of the sediment, plants and leachates was performed for five months. 

Each month, three pots per condition were removed from the experiment for the analysis of 

the sediment and plant. The sediment was separated manually from the roots, sieved (< 2 

mm), and total metals concentrations, pH, total carbon (TC) and metals exchangeable and 

phytoavailable pools were measured on triplicates.  

 

The Ca(NO3)2 exchangeable pool was measured according to (Bert et al. 2012). After sieving 

(< 2 mm) and drying the sediment at 60°C, 10 g (DW) were shaken in 20 mL Ca(NO3)2 0.01 

N (analytical quality in ultrapure water) for 48 hours at room temperature. After 

centrifugation (20 min at 1200 g), filtration (0.45 µm), and acidification of the supernatant 

(0.5 mL of concentrated, supra-pure nitric acid), metal concentrations were determined by 

ICP-AES.  

  

Metals phytoavailability was estimated by diffusive gradient in thin film (DGT) probes 

(Zhang et al., 2001, Nolan et al., 2005). DGT devices loaded with a 0.4 mm resin gel layer 

(chelex gel), a 0.7 mm diffusive gel layer (polyacrylamide gel, restrictive pore) and a 0.13 

mm filter (cellulose nitrate) were provided by DGT Research Ltd. 100 g of sieved sediment 

were wet to 100 % field water capacity, manually mixed to make a smooth paste, and finally 

shaken for 3 days. DGT were pressed gently onto the surface of the sediment and placed for 

17h between 20°C and 24°C. Metal analyses and determination of CDGT were made by ICP-

MS or AAS by DGT Research Ltd.  

Plant aspects were examined and rosette diameters were measured on a monthly basis. 

Besides, on monthly removed pots, three plants of each origin were harvested to analyze their 
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aboveground parts (biomass and metals concentrations). Aerial parts were washed with 

deionised water, oven-dried at 40°C until constant weight, then biomass was weighed, ground 

and homogenized to prepare one aliquot per pot. Total concentrations of Cd in plant tissues 

were determined after digestion of 1 g dry matter in 10 ml of HNO3 and 3 ml of H2O2, in a 

microwave oven. Solutions were filtered, adjusted to 100 ml with Milli-Q® water and stored 

at 4°C before analysis. Cd concentrations in the digests were determined by ICP-AES. 

Spinach leaves samples (SRM 1570a) were used as certified standard.  

 

The monitoring of leachates was performed monthly on the same three pots (cultivated or 

not). Leachates were collected at the bottom of the pots after the substrate (cultivated and 

non-cultivated) had been watered with 1 L of deionised water, delivered in small volumes 

(200 mL). Leachates were collected for 2 hours after watering. Leachates were filtered (0.45 

µm), then aliquots of 10 mL were acidified with HNO3 (suprapur®) and stored at 4°C before 

analysis. Metals concentrations were determined by ICP-AES for which quality control was 

based on the use of internal control samples.  

 

Statistic analysis was performed using two and one-way ANOVA followed by post hoc 

comparison using Tukey’s test for comparison of individual means (statistical program SPSS 

15.0 (2007)). 

 

3. Results 

 

3.1 Cd speciation in the sediment before and after culture of A. halleri 

 

3.1.1 Average Cd speciation by Cd K-edge bulk EXAFS spectroscopy  

The speciation of Cd in the sediment before and after culture was examined by EXAFS 

spectroscopy. Representative Cd K-edge EXAFS reference spectra used for the linear 

combination fits are shown in Figure 2. Figure 3 shows the sediment spectra and LCFs 

results. The spectrum for the sediment before culture was correctly reconstructed with 100% 

(Zn, Cd, Fe)S (Fig. 3). Adding a second component did not improve significantly the fit (not 

shown). Thus, Cd was mainly present as a mixed metallic sulfide. Spectra for the sediment 

after culture with A. halleri MET and N-MET, and for the control (i.e. non vegetated) 

sediment were similar, although the later presented slightly lower amplitude oscillations, in 

particular at 11 Å-1 (Fig. 3A). Cd in the non vegetated pot was present as 74 ± 2 % Cd-
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Organic acids, 22 ± 1 % Cd-phosphate and 8 ± 1 % Cd as mixed sulfide ((Zn, Cd, Fe)S - Fig. 

3B). Removing this later species increased the fit residual by 11 %. Thus, although the 

proportion of Cd mixed sulfide is within the precision of the method as generally estimated (± 

10 %), its contribution may be significant in the present case. At the opposite, spectra for 

vegetated sediment were correctly fitted with a combination of Cd-organic acids 64 ± 5 % and 

61 ± 16 % for MET and N-MET respectively) and Cd-phosphate (34 ± 2 % and 30 ± 16 % 

respectively). These results evidence changes in Cd speciation during the pot experiment. Cd 

sulfide was almost completely oxidized in the absence of plants, and secondary phases 

including Cd-organic complexes and Cd phosphate were formed. The same process was 

observed in the presence of plants, but the removal of Cd sulfide was total and the proportion 

of Cd-phosphate increased. There was no influence of the origin (MET or N-MET) of A. 

halleri on Cd speciation in the substrate.  

Structural parameters for Cd in the sediment and several representative Cd reference 

compounds were then determined by shell fitting (Fig. 4, Table 2). For CdS, Cd-phosphate 

and CdCO3, structural parameters were consistent with the XRD structures (Huguet et al., 

2012). For (Zn, Cd, Fe)S, the first shell of coordination was simulated by 4 S atoms at 2.52 Å, 

as in CdS structure, and the second shell by a mixture of Fe, Zn and Cd atoms (Table 2, Fig. 

SI-3). As expected, the same type of environment was obtained for the sediment before 

culture. Fit with Cd only as next nearest neighbour was not satisfactory (Fig. 4B). Based on 

the Fe, Zn, Cd coordination numbers (0.3, 4.8 and 2.2, respectively, Table 2), it can be 

concluded that Cd was present as a mixed sulfide containing about 2/3 Zn, 1/3 Cd and traces 

of Fe. The sum of Zn, Cd and Fe contributions was 7.3 atoms, i.e. significantly lower than the 

10 atoms in CdS or ZnS structure, but like in the (Fe Zn Cd)S reference, i.e. about 8 

neighbours in the second shell. This difference likely reflects some structural disorder, 

probably due to the presence of metals with very different ionic radii in the crystal lattice, 

and/or to the presence of non-equivalent crystallographic sites for Cd. The Fourier 

transformed spectra for the sediments after the pot experiment showed a first shell at a 

distance typical of oxygen ligands, and almost no second shell peak (Fig. 4B). For the 

vegetated pots, fit results gave 6-7 O atoms at 2.29-2.3 Ǻ (Table 2). For the non vegetated pot, 

a minor contribution of S atoms was found, which is consistent with LCFs results. Due to the 

very low amplitude, no significant signal was observed for R+ΔR > 2.5 Å: no second shell 

was needed for the simulation.   

 

3.1.2   SEM-EDS, micro-XRF and Cd-LIII edge and S-K edge µXANES analyses 
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Micro-scale investigations were performed to observe geochemical associations, weathering 

processes of Cd sulfide grains, and to identify possible minor forms of Cd in sediment before 

and after culture. SEM-EDS enabled the localization of Cd-rich regions in various types of 

grains. A representative coarse grain of the sediment before culture is shown in Figure 5, and 

two representative grains for the sediment after culture are shown in Figure 6. For the 

sediment before culture, metal-rich areas were localized at the edge of the grain (Fig. 5A, B). 

The Cd richest region contained Zn and S as major elements (40 and 31 % in atomic % based 

on the EDS calculated composition), as well as Si (12 %), Al (6.9 %), Mg (3.1 %), Cd, Ca and 

Na (1.8 %), Fe (1.1 %). These results suggest the presence of Zn sulfide containing impurities 

of Cd and Fe, associated with aluminosilicates nanoparticles. These findings are consistent 

with bulk EXAFS results. Other regions contained more diffuse Cd concentrations around 

Cd-rich spots. Two spots were selected for µXANES analyses, the Cd rich spot described 

above (P2, with S/Cd fluorescence intensity ratio = 8 and P/Cd = 0.4, Fig. 5B), and a spot 

with more diffuse Cd concentration (P1, with S/Cd = 21 and P/Cd = 0.8, Fig. 5B). Cd LIII-

edge µXANES spectra recorded on the bulk sediment, on P2 and P1 are shown in Figure 7. 

They show a smooth edge characteristic of S ligands (Isaure et al., 2006). They were all fitted 

with 100 % Cd sulfide species. (Zn, Cd, Fe)S was the only component for the bulk sediment 

and the Cd richest spot (P2), whereas Cd-thiols (Cd-organic sulfides) were present as 

additional component in P1 (Fig. 9). Figure 7 shows that the spectrum for Cd-thiol has some 

similarities with CdS and (Zn, Cd, Fe)S, but is smoother.  

In addition, S K-edge µXANES were recorded in the bulk sediment and on P1 and P2 spots to 

investigate S oxidation state (Fig. 8). They all showed a first peak at 2473 eV, characteristic 

of reduced S (Fig. 8). In addition, P1 shows a peak at 2482 eV (Fig. 8) characteristic of 

oxidized S. Three families were distinguished by LCFs, including mineral sulfides, organic 

sulfides and oxidized S species. Mineral sulfides dominated in the bulk and in P1 and P2 

spots, organic sulfides represented minor species in P1 and P2 spots, and oxidized species 

represented 4 % (in the bulk) to 12 % (in P1 - Fig. 9). 

 

Two representative grains for the sediment after culture showed reddish brown area around 

the grains that indicated the presence of oxidized Fe (Fig. 6A). SEM-EDS analyses showed 

that Cd-rich region contained also S, Fe, Zn, Si, Al and P in various proportions (Fig. 6B). 

Micro-XRF maps allowed to localize the Cd most concentrated spot previously identified by 

SEM and to visualize more precisely the chemical associations. The Cd richest spot, P3A, 

contained also S and P (Fig. 6B). Another Cd-rich spot, P3B, was less rich in S and P than 
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P3A (Fig. 6B). The spot P3C contained less Cd (Fig. 6B). The second representative grain 

shows a zone with diffuse Cd co-localized with P, and to a lesser extent with S (spot P4, Fig. 

6C). The Cd LIII µXANES spectra for P3A and P3B were similar to P1 and P2, whereas P3C 

and P4 spectra presented a pre-peak at 3538 eV characteristic of Cd-O bond (Fig. 7). Based 

on LCFs, the Cd richest spots (P3A and P3B) contained a majority of Cd sulfides and 15 to 25 

% Cd Cd-organic acids, whereas the more diffuse zones (P3C and P4) contained Cd-organic 

acids and Cd-phosphate as major species (80 and 100 %, respectively – Fig. 9). Thus, Cd 

speciation drastically changes from P3B to P3C which are distant of about 50 µm. The 

presence of Cd phosphate is consistent with the high P signal in spot P4. The chemical state of 

S as determined by S K-edge XANES showed an increase in oxidized S species following the 

increase in Cd-O species. The spot containing the higher amount of oxidized S is P4, with 34 

% (Fig. 9). In this spot, Cd-S species were completely replaced by Cd-O species. Thus, other 

sulfide species, more resistant to oxidation than the one hosting Cd, are still present. Again, 

spots distant of 50 µm only showed very different S speciation. These results were obtained 

on the sediment vegetated with MET plants. Very similar results were obtained with N-MET 

plants, therefore these results are not presented here.  

To conclude, the persistence of Cd sulfide species in some Cd rich spots was observed in the 

sediment after culture. These species represent less than 10 % of total Cd since they were not 

detected by bulk XAS. In addition, a large variety of S oxidation states was observed, but 

reduced S dominated, even in spots where Cd sulfides species had been oxidized.  

 

3.2 Cd exchangeability and leaching 

 

XAS is not very sensitive to weakly sorbed species, and it is useful to evaluate in parallel the 

exchangeable and bioavailable pool at the macroscopic scale by physico-chemical approaches.  

Cd pseudo-total concentration in sediment before culture was about 140 mg kg-1 (Tab.1) and 

was not significantly different than those measured in sediment during and after culture with 

MET or N-MET plants and in control pots, i.e. without plant (not shown). However, after 

culture, a decrease of approximately 0.6 pH unit was observed in pots with plants (regardless 

their origin) and in control pots (ANOVA 1 factor P>0.05 - not shown). Indeed the pH 

measured before culture in sediment at 7.48 ± 0.01 (Tab.1) was then measured at 6.86 ± 0.22, 

6.95 ± 0.03 and 6.81 ± 0.02 for MET, N-MET and control pot respectively. Decrease in pH 

measurement was not a plant effect. It was probably correlated with oxidation of metallic 

sulfides in sediment. 
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For the sediment before culture, Ca(NO3)2-extractable Cd concentration was 1.02 ± 0.1 mg 

kg-1 DW (Fig. 10A). At the end of the monitoring, this parameter decreased significantly in 

the control pot (P<0.05, 0.71 ± 0.03 mg kg-1 DW at t6 for control pot, Fig. 10A). For 

vegetated pots, extractable Cd concentrations measured monthly were significantly different 

from the sediment before culture, even after only one month (P<0.05, Fig. 10A). However, 

they were not significantly different from those measured in the control pot at t6 (P>0.05, Fig. 

10A). Thus, there was no plant effect on Cd extractable concentrations during culture 

regardless of A. halleri origin.     

DGT was used to quantify Cd phytoavailable pool in sediment for some samples (Fig. 10B). 

Cd bioavailable concentrations were lower than Cd extractable concentrations. By 

comparison with Cd extractable concentrations, there was no significant difference between 

bioavailable Cd in the sediment before culture and in vegetated pots (Fig. 10B). Bioavailable 

Cd was not measured on pots without plant at the end of the assay.   

Thus, the major changes in Cd speciation observed between the sediment before and after 

culture did not induce marked changes in Cd exchangeability and bioavailability.  

 

The evolution of Cd concentrations in leachates was monitored monthly (Fig. 11A). For 

control pots, Cd concentrations were not significantly different over time (P>0.05 – Fig. 11A): 

about 0.30 ± 0.07 mg L-1. By contrast, in vegetated pots Cd concentrations were lower from t2 

and then did not vary significantly (Fig. 11A). Thus, the presence of plants seems to decrease 

Cd concentrations in leachates. 

 

3.3 Cd transfer in the plant  

 

The plant biomass was measured monthly. At ti, when plants were transferred on sediment, 

plants of both origins presented similar biomasses, i.e. 3.0 ± 1.1 g for MET plants and 3.2 ± 

1.7 g for N-MET (average for n=3 ± SD, (P>0.05, test of Student - Fig.11B). Biomasses 

measured after one month of growth, i.e. at t1, were higher than those measured at ti (Fig. 

11B). This shows that plants were able to develop on contaminated sediment. No significant 

increase of biomass was observed for N-MET plants between t1 and t5 (P>0.05, Fig. 11B), but 

standard deviations were important. MET plants biomass increased from t1 to t3 and then 

decreased (P<0.05, Fig. 11B). The maximum difference in biomass was observed the third 

month (33.1 ± 4.6 g for MET), and could be related to a better tolerance of metallicollous 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

plants compared to non metallicolous ones (Meyer et al. 2015) as shown for Zn (Meyer et al., 

2010). During the fourth month of culture, one part of MET plant leaves began to show 

drought signs. The decrease in biomass observed at t4 and t5 could be a response to sediment 

toxicity.   

 

Cd concentrations were measured in aerial parts of A. halleri at ti as follow: 3.7 ± 2.4 and 4.7 

± 1.0 mg kg-1 DW for MET and N-MET plants respectively (Fig. 11C). There was no 

significant difference between plant origins (Student test: P>0.05). From t1 to the end of 

growth, Cd concentrations were higher than those measured at ti. For instance, between ti and 

t1 Cd concentrations in aerial parts were respectively increased by 30 and 39 times for MET 

and N-MET. All measured concentrations, except for N-Met at t2, reached the 

hyperaccumulating threshold set to 100 mg Cd kg-1 DW (Baker and Brooks, 1989, Wenzel 

and Jockwer, 1999). For each origin tested separately, no significant variation of Cd 

concentrations in aerial parts was observed with time (P>0.05, Fig. 11C). Maximal Cd 

concentrations were 204 ± 96 and 185 ± 18 mg kg-1
 (n=3 ± SD) for, respectively, MET plant 

at t4 and N-MET plant at t1 (Fig. 11C). Standard deviations were important, suggesting a high 

inter-individual variability in Cd accumulation.  

 

4. Discussion 

 

4.1 Cd speciation in sediment before and after culture of A. halleri 

 

Before culture, Cd in the sediment was present as a mixed Cd,Zn,Fe-sulfide containing about 

2/3 Zn, 1/3 Cd and traces of Fe. Cd-containing mixed sulfides were also observed in metal-

contaminated marine sediments (O'Day et al.; 1998; Carroll et al., 2002). A previous study on 

Zn speciation in the Scarpe sediment showed that Zn was mostly present as sphalerite (Isaure 

et al, 2002). Considering that Zn is 25 to 30 times more concentrated than Cd in this sediment 

(Table 1), it is clear that the sediment contains both some mixed Cd,Zn,Fe-sulfides and pure 

Zn sulfide. This was confirmed by SEM-EDS. Likewise, pure pyrite grains were observed by 

SEM-EDS (not shown), so Fe is present both in mixed metallic and pure Fe sulfide. 

Polymetallic sulfides may come from the ore which was transported by boat on the river, from 

atmospheric emissions of the smelters and dissemination of smelter slag (Isaure et al, 2002). 

They may also be formed during early diagenesis of sediments (Audry et al., 2005). The 
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presence of both reduced and oxidized forms of sulfur in the sediment shows that it has been 

partially oxidized during the drying and preparation procedure. 

After 5 months of pot experiment, Cd sulfides were totally (for vegetated pots) and almost 

totally (8 % remaining Cd sulfides in non vegetated ones) oxidized, and secondary species 

included Cd-organic acids and Cd phosphates. Micro analyses confirmed the persistence of 

Cd sulfides in some regions of the sediment thin sections. The study of Zn speciation in 

dredged sediment from the Scarpe vegetated or not with two Poaceae (Agrostis tenuis and 

Festuca rubra) showed that after 18 months of culture, ZnS was almost completely oxidized, 

whereas half of Zn was still present as ZnS in the pot without plant (Panfili et al., 2005). 

Although plants and conditions differed between the two studies, the comparison of the 

results suggested a higher sensitivity to oxidation for Cd than for Zn in this sediment. 

Previous studies on mixed metallic sulfides suggested different sensitivities of metals towards 

oxidation, with preferential release of Zn relative to Cd (O'Day et al., 1998; Barret and 

McBride, 2007). The same tendency was observed in Zn, Cd-containing soils rich in sulfur 

(McBride et al., 2006; de Livera et al., 2011). These results are not in contradiction with our 

results because in the Scarpe sediment, Cd was mostly present in a mixed (Zn, Cd, Fe)sulfide, 

whereas Zn was mostly present as pure ZnS. Thus, the change in Zn speciation in this 

sediment is controlled by ZnS much more than by the mixed sulfide. The persistence of 

reduced S species in regions of the thin sections where Cd was bound to O ligands (see 

Results) suggests that other metallic sulfides are still present in regions where Cd has been 

oxidized.   

In the sediment without plant, the oxidation of metallic sulfides may be ascribed to the 

alternating dry and wet conditions due to watering, which brings oxygen to the system. 

Barrett and McBride (2007) demonstrated that oxidation of inorganic sulfides to SO4
2- in 

aerated soil environments proceeded within hours. In a study on Cd speciation in a paddy soil, 

Fulda et al. (2013) showed the formation of Cd sulfides under flooded (anoxic) conditions. 

The CdS crystallites, estimated to be nanometer-sized, were oxidized upon aeration of the 

system, and the original Cd speciation, dominated by Cd-carboxyl species, was restored. Like 

in acid mine drainage environments, the oxidation of metallic sulfides may be catalyzed by 

microorganisms. Bacteria present in sediments of the Scarpe River have been shown to play 

an important role in increasing or decreasing metal availability (Lors et al. 2004; Bert et al 

2009, 2012). Bert al. (2012) suggested that bioleaching of metals was caused by sulfur-

oxidizing bacteria whereas anaerobic sulfate-reducing bacteria could precipitate metals. 
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In the planted sediment, the oxidation process was slightly higher, although the difference is 

close to the uncertainty of the method. Several processes taking place in the rhizosphere 

might explain this oxidation: Plant rooting may increase the penetration of oxygen in the 

sediment. This effect counterbalances the effect of root respiration which, conversely, causes 

O2-impoverishment and CO2-enrichment of the rhizosphere (Marschner 1995; Hinsinger et al, 

2003). The uptake of water, ions and nutrients and the release of ions and organic ligands by 

the root and associated organisms (fungi, bacteria) are supposed to affect the chemical 

equilibria and induce dissolution-reprecipitation and sorption-desorption processes.  

In vegetated and non vegetated pots, Cd was mainly associated with phosphates (30-34 and 

22 %, respectively) and with COOH/OH groups of organic matter (61-64 and 74 %, 

respectively). Cd phosphate can be considered as a stable species on the long term (Hamon et 

al., 1998). The role of organic matter in Cd binding in the Scarpe sediment after land disposal 

was highlighted by Vansimaeys et al. (2009), who evaluated by chemical extractions an 

increase from 10 to 65 % of organically bound Cd from the fresh to land deposited, drained 

sediment. Piou et al. (2009) also suggested an important role of organic matter in the control 

of the seasonal dynamics of Cd. The binding of Cd to COOH/OH groups of organic matter is 

consistent with previous findings by Liu et al. (2001) and Fulda et al (2013). Karlsson et al. 

(2007) identified a mixture of O- and S-containing ligands for Cd in a peat soil. The 

association of Cd with phosphate is not surprising because of the high P content of the 

sediment, and high affinity of Cd for phosphate minerals. The proportion of Cd phosphate 

was slightly higher in the vegetated than in the non vegetated pots. This can be related to the 

rhizosphere activity favouring the mobilization and increasing its availability (Hinsinger et 

al., 1998). The present EXAFS data do not allow to distinguish Cd-sorbed or coprecipitated 

phosphate, but both phenomena are likely (Brown et al. (2004). 

 

4.2 Impact of A. halleri culture on Cd exchangeable pool and leachates 

 

Although the presence of plants had an impact on Cd speciation in the sediment, they did not 

influence Cd exchangeable and phytoavailable pools. Both the Cd exchangeable and 

phytoavailable pools did not vary significantly with time for MET and N-MET plants. Low 

standard deviations indicated low variability between pots for these pools. The relative 

stability in the exchangeable and phytoavailable pools suggests that Cd sulfides on one hand, 

and the mixture of Cd phosphate and Cd-organic acids on the other hand, display similar 

exchangeabilities. This result suggest that the Cd-organic acid complexes are weakly 
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exchangeable. At the opposite, Zn-organic complexes found in Zn-contaminated organic soil 

were highly exchangeable (Sarret et al., 2004). The stability of Cd exchangeability during the 

experiment also suggests that Cd released by oxidation of sulfides was readily taken up by the 

secondary phases, with no transient phase with high Cd availability. The Cd content in the 

leachates was very low and the presence of the plant induced a decrease in Cd concentrations 

from the second month of culture. This phenomenon can be related to the colonization of the 

pot by roots and the development of a stable rhizosphere, decreasing the transfer of dissolved 

and particulate Cd. Plants grown on the sediment contained between 100 to 200 mg kg-1 Cd 

DW in their aerial parts. This relatively low Cd accumulation is consistent with the low Cd 

availability and with the fact that A. halleri is not a strong Cd hyperaccumulator (Huguet et 

al., 2012). The lack of difference in Cd solid state speciation, availability and leachability 

suggests that the rhizospheric activity of both plants have a similar impact on the soil 

chemistry. Additional data on root exudates, microbial activity and redox potential would be 

necessary to elaborate more on this point. 

 

 

5. Conclusion  

 

This study assessed the fate of Cd present in a contaminated dredged sediment during a pot 

experiment. The combination of chemical analyses and EXAFS spectroscopy allowed to 

elucidate chemical forms of Cd in the sediment before and after plant culture. Before culture, 

Cd was present as a mixed Zn, Cd, Fe sulfide. This mixed sulfide was relatively sensitive to 

oxidation since after 5 months of pot experiment, Cd-bearing sulfides were mostly oxidized in 

control pots without plants. The presence of Arabidopsis halleri seemed to enhance this 

process since Cd sulfides were totally oxidized in vegetated pots. Secondary species including 

Cd bound to O-containing groups of organic matter and Cd phosphates were formed both in 

vegetated and non vegetated pots. These changes probably occurred via both abiotic and 

biotic processes, and were enhanced by the plant activity. Despite these changes in speciation, 

there was no change in Cd exchangeability or phytoavailability. Cd phosphate can be 

considered as stable on the long term. Cd–organic matter complexes may not be stable on the 

long term, but their presence did not increase Cd phytoavailability during the experiment. 

This low availability and low transfer of Cd to leachates and plants are positive signals in 

terms of environmental management. A low Cd availability was also observed in the field 

after land application of the Scarpe sediment (Piou et al., 2009). The presence of plants is 
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supposed to give an added value to land disposal because of their role in the limitation of 

aerial dispersion of contaminants. This study shows that it also has a positive effect on Cd 

speciation. However, it is important to consider that  Cd speciation may fluctuate depending 

on flooding and redox conditions (Piou et al., 2009; Fulda et al., 2013), and that Cd sulfide 

species may form again under flooded or saturated conditions. Thus, land application and 

vegetation of the sediment may be an interesting option, provided that the substrate remains 

unsaturated. .  
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Table captions 

 

Table 1: General properties of studied sediment. Averages and standard deviations over 3 

samples. 

 

Table 2: First shell structural parameters by shell fittings of the EXAFS spectra for sediment 

samples before and after culture, with or without plant, and for references.   

 

Figure captions 

 

Figure 1: Schema summarizing the design of culture experiment. ti means « initial time » that 

corresponds to the time of A. halleri seedlings transfer in sediment. The monitoring was done 

every month from the time t0. 

 

Figure 2: Cd K-edge EXAFS spectra for reference compounds including CdCO3 (powder); 

Cd(OH)2 (powder); CdCl2 (powder); CdSO4 (powder); Cd-goethite : 0.8% Cd (powder); Cd-

phosphate : Cd5H2(PO4)4.4H2O (powder); Cd(NO3)2 (powder); Cd2+ : 10 mM Cd2+ at pH=2.2 

(Cd dissolved form); Cd-cellulose : described in Isaure et al., 2006; Cd-OAs : 5 mM Cd, 14 

mM citrate, 100 mM malate and 400 mM succinate at pH 5.5; Cd-cysteine :  (Zn, Cd, Fe)S as 

mixed sulfide (powder) characterized by XRD; CdS (powder). 

 

Figure 3: (A) Cd K-edge EXAFS spectra for sediment before and after culture, with or 

without plant. Each spectrum (plain lines) is shown with its linear combination fit (dotted 

lines). (B) Distribution of Cd species for samples after normalization of the percentage to 

100%.  

 

Figure 4: Cd K-edge EXAFS spectra (A) and Fourier transforms (B) for sediment before and 

after culture, with or without plant, and for references: CdCO3 and Cd-phosphate as 

representative of Cd-O bonds and CdS and (Zn, Cd, Fe)S as representative of Cd-S ligands. 

Each spectrum (plain lines) is shown with their shell fittings (dotted lines).  

 

Figure 5: SEM EDS images and EDS spectrum recorded in Cd-rich spot of a coarse fraction 

grain of sediment before culture (A) and elemental maps for Cd, S and P of this region 
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recorded by µXRF (B), with a step-size of 3µm and 1s/pixel of counting time. Spots were 

called “P1-before culture” and “P2-before culture”. 

 

Figure 6: Light microscope and SEM EDS images of a coarse grain of sediment after culture 

with MET plant and EDS spectrum recorded in Cd-rich spot (A), and elemental maps for Cd, 

S, P, Si and Al of this region recorded by µXRF (B), with a step-size of 3µm and 1s/pixel of 

counting time. Spots were called “P3A-after culture”, “P3B-after culture” and “P3C-after 

culture”. Another Cd-rich grain was investigated: elemental maps for Cd, S, P, Si and Al of 

this other region recorded by µXRF (C), with a step-size of 3µm and 1s/pixel of counting 

time. Spot was called “P4-after culture”.  

 

Figure 7: Cd LIII-edge XANES spectra of bulk sediment before culture and reference 

compounds (XANES spectra) and µXANES spectra recorded on Cd-rich spots of sediment 

before culture and after culture with MET plant. Experimental spectra are in plain lines and 

best linear combination fits are in dotted lines. Reference compounds representative of Cd-O 

ligands are CdCO3, Cd-organic acid (Cd-malate), and representative references of Cd-S 

ligands are Cd-thiol (Cd-cysteine), and sulfides: CdS and (Zn, Cd, Fe)S.   

 

Figure 8: S K-edge XANES spectra of bulk sediment before culture and reference compounds 

(XANES spectra) and µXANES spectra recorded on Cd-rich spots of sediment before culture 

and after culture with MET plant. Experimental spectra are in plain lines and best linear 

combination fits are in dotted lines. Reference compounds are oxided sulfur (Cd-sulfate), 

sulfoxide (DL-methionine sulfoxide, from Sarret et al., 1999), organic sulfide (DL-cysteine, 

from Sarret et al., 1999) and mineral sulfides (CdS and (Zn, Cd, Fe)S ).   

 

Figure 9: Distribution of Cd (A) and S (B) species for samples after normalization of the 

percentage to 100%. Percentages presented are the average over satisfactory fits, defined by 

NSS comprised between the value obtained for the best fit (NSSbest) and 1.1 NSSbest.   

 

Figure 10: Comparison between concentrations of Cd extractable measured by Ca(NO3)2 

extraction (A) and Cd phytoavailability estimated by DGT (B), in the sediment cultivated 

with MET and N-MET plants (grey and white respectively), and in the control (without plant 

- hatched). All data are averages ± SD over 3 samples. “PA” means “plant adaptation”. On 

each graph, results of statistical tests are indicated by Latin and Greek letters for MET plant 
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culture and N-Met plant culture respectively. A different letter indicates a significant 

difference at the P=0.05 level.  

 

Figure 11: (A) Cd concentrations [mg.L-1] measured in leachates collected from cultivated 

pots with MET plant (grey) and N-MET plant (white) origins and non cultivated pot as a 

control (hatched), (B) biomass and (C) Cd concentrations measured in aerial parts of A. 

halleri from MET and N-MET origins. Averages and standard deviations are over 3 samples. 

For each graph, results of statistical tests are indicated by Greek and Latin letters for pots with 

MET plant and N-MET plant respectively. A different number or letter indicates a significant 

difference at the P=0.05 level. There is no significant difference of Cd concentration in 

leachates measured in control pots without plant. 
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Table 1 

   

Clay    < 2 µm % 18 ± 0.5 (3) 
Silt      2µm - 50 µm % 45 ± 1 (3) 
Sand   50µm - 2 mm % 36 ± 1 (3) 
      

CaCO3 (total) % 7.2 ± 0.2 (3) 
      
TOC % 10.5 ± 0.2 (3) 

pH, H2O  7.48 ± 0.01 (3) 
      

OM g kg-1 225 ± 1.3 (3) 
      

CEC Metson cmol(+) kg-1 25.4 ± 0.5 (3) 

K (K2O) exchangeable g kg-1 0.24 ± 0.02 (3) 

Mg (MgO) exchangeable g kg-1 0.599 ± 0.003 (3) 

Ca (CaO) exchangeable g kg-1 15.47 ± 0.06 (3) 

Na (Na2O) exchangeable g kg-1 0.205 ± 0.003 (3) 

P (P2O5) Olsen g kg-1 0.227 ± 0.003 (3) 
      

Cd concentration mg kg-1 141 ± 24 (3) 

Zn concentration mg kg-1 4074 ± 280 (3) 

Cu concentration mg kg-1 233 ± 9 (3) 

Pb concentration mg kg-1 600 ± 20 (3) 

Ni concentration mg kg-1 48 ± 2 (3) 

As concentration mg kg-1 57 ± 4 (3) 
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Table 2 
 
 

                

References and Samples K range (Å-1) R range (Å) Atom N R (Å) σ
2 (Å2) NSS 

                

        

CdCO3 [3.2 - 14.7] [1.35 - 4.1] O 6.2 2.28 0.004 

0.0090 
   C 6.1 3.18 0.005 

   O 5.8 3.40 0.005 

   Cd 6,0 3.93 0.004 
        

Cd-phosphate [3.2 - 14.3] [0.88 - 4.5] O 6.1 2.27 0.008 
0.0110    P 2.9 3.44 0.009 

   Cd 1.7 3.50 0.009 
        

CdS [3.5 - 13.9] [1.37 - 4.7] S 4,0 2.52 0.003 
0.0150 

   Cd 10.4 4.14 0.007 
        

(Zn. Cd. Fe)S [3.6 - 13.4] [1.32 - 4.6] S 4,0 2.52 0.004 

0.0190 
mixed sulfide   Fe 0.4 3.69 0.009 

   Zn 5,0 3.89 0.009 

   Cd 2.5 4.18 0.009 
        

Sediment - before culture [3.6 - 13.4] [1.35 - 4.3] S 4,0 2.51 0.004 

0.0024 
Adjustment with (Zn, Cd, Fe)S   Fe 0.3 3.69 0.009 

structure   Zn 4.8 3.89 0.009 

   Cd 2.2 4.17 0.009 
        

Sediment - before culture [3.6 - 13.4] [1.35 - 4.3] S 4.2 2.51 0.004 
0.0037 Adjustment with (Zn, Cd, Fe)S   Zn 4.3 3.89 0.009 

Structure without Fe atoms   Cd 3.1 4.17 0.009 
        

Sediment without plant [3.2 - 10.8] [1.2 - 2.9] O 5.5 2.29 0.010 
0.0026 

after culture   S 0.6 2.47 0.010 
        

Sediment with MET plant 
[3.2 - 10.8] [1.2- 2.3] O 6.7 2.29 0.009 0.0039 

after culture 
        

Sediment with N-MET plant 
[3.2 - 10.8] [1.2 - 2.3] O 6.2 2.30 0.009 0.0057 

after culture 
                

N: number of atoms, R: interatomic distance, σ2: Debye Waller factor, NSS: residual between fit and experiment. Experimental errors on 
N and R are ± 10% and 0.01 Å as estimated from the fit of reference compounds.
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Figure 11. 
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Clay    < 2 µm % (1)
Silt      2µm - 50 µm % (1)
Sand   50µm - 2 mm % (1)

CaCO3 (total) % (1)

TOC % 9.16 ± 0.9 (3)
pH, H2O 6.94 ± 0.05 (3)

OM g kg-1
(1)

CEC Metson cmol(+) kg-1 (1) 52.7 ± 1.6*

K (K2O) exchangeable g kg-1 (1) 0.985 ± 0.004*

Mg (MgO) exchangeable g kg-1 (1) 1.123 ± 0.011*

Ca (CaO) exchangeable g kg-1 (1) 13.06 ± 0.03*
Na (Na2O) exchangeable g kg-1 (1) 0.0352 ± 0.0003*

P (P2O5) Olsen g kg-1 (1)

Cd concentration mg kg-1 0.90 ± 0.21 (15)
Zn concentration mg kg-1 88 ± 20 (15)
Cu concentration mg kg-1 24.8 ± 4.3 (15)
Pb concentration mg kg-1 109 ± 15 (15)
Ni concentration mg kg-1 18.5 ± 2.9 (15)
As concentration mg kg-1 17.7 ± 2.8 (15)
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Figure SI-1: General properties of two different soils where A. halleri seeds were 
collected : Grain size distribution, sediment carbonate content (CaCO3), Organic 
total carbonate (TOC), pH, organic matter content (OM), cation exchange capacity 
(CEC), exchangeable cations and heavy metal concentrations. Averages and 
standard deviations over (n) samples.
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Figure SI-2: Characterization of the natural mixed sulfide reference: A: X-ray 
diffractogram.  B: µXRF spectrum (incident beam: 40 kV, 200 µA) 
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Cd subst. sphalerite (Cd0.12Zn0.78S, 
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Figure SI-3: Fourier transform modulus of the k3.chi(k) spectrum for the mixed sulfide (Zn, 
Cd, Fe)S reference compound (blue) and shell fitting (red). Fe, Zn and Cd individual 
contributions for the second shell are shown.
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