C. Basdogan, C. Ho, and M. Srinivasan, Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration, IEEE/ASME Transactions on Mechatronics, vol.6, issue.3, pp.269-285, 2001.
DOI : 10.1109/3516.951365

S. P. Dimaio and S. E. Salcudean, Interactive Simulation of Needle Insertion Models, IEEE Transactions on Biomedical Engineering, vol.52, issue.7, pp.1167-1179, 2005.
DOI : 10.1109/TBME.2005.847548

Y. Tillier, A. Paccini, M. Durand-reville, and J. Chenot, Finite element modeling for soft tissue surgery based on linear and nonlinear elasticity behavior, Computer Aided Surgery, vol.4, issue.1, pp.63-68, 2006.
DOI : 10.1007/PL00007215

URL : https://hal.archives-ouvertes.fr/hal-00530651

A. Jorge, M. Ferreira, and . Doblaré, Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue, Biomech. Model Mechanobiol, vol.9, pp.35-44, 2010.

C. Rubod, M. Brieu, M. Cosson, G. Rivaux, J. Clay et al., Biomechanical Properties of Human Pelvic Organs, Urology, vol.79, issue.4, pp.17-22, 2012.
DOI : 10.1016/j.urology.2011.11.010

R. Baumann and D. Glauser, Force feedback for virtual reality based minimally invasive surgery simulator, Medecine Meets Virtual Reality, 1996.

P. Meseure and C. Chaillou, A deformable body model for surgical simulation, The Journal of Visualization and Computer Animation, vol.22, issue.4, pp.197-208, 2000.
DOI : 10.1002/1099-1778(200009)11:4<197::AID-VIS229>3.0.CO;2-H

N. Pirro, M. E. Bellemare, M. Rahim, O. Durieux, I. Sielezneff et al., Preliminary results and perspectives for female patient-specific modelling of the pelvic organs, Pelvi-p??rin??ologie, vol.236, issue.1, pp.15-21, 2009.
DOI : 10.1007/s11608-009-0231-3

S. Cotin, H. Delingette, and N. Ayache, A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation, The Visual Computer, vol.16, issue.8, pp.437-452, 2000.
DOI : 10.1007/PL00007215

URL : https://hal.archives-ouvertes.fr/hal-01386233

G. Picinbono, H. Delingette, and N. Ayache, Non-linear anisotropic elasticity for real-time surgery simulation, Graphical Models, vol.65, issue.5, pp.305-321, 2003.
DOI : 10.1016/S1524-0703(03)00045-6

URL : https://hal.archives-ouvertes.fr/inria-00072611

H. Delingette and N. Ayache, Soft Tissue Modeling for Surgery Simulation, Computational Models for the Human Body, pp.453-550, 2004.
DOI : 10.1016/S1570-8659(03)12005-4

URL : https://hal.archives-ouvertes.fr/inria-00615656

K. Miller, G. Joldes, D. Lance, and A. Wittek, Total langrangian explicit dynamics finite element algorithm for computing soft tissue deformation

Y. Lim and S. De, Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.31-32
DOI : 10.1016/j.cma.2006.05.015

S. Niroomandi, I. Alfaro, D. Gonzalez, E. Cueto, and F. Chinesta, Model order reduction in hyperelasticity: a proper generalized decomposition approach, International Journal for Numerical Methods in Engineering, vol.199, issue.23-24, pp.129-149, 2013.
DOI : 10.1002/nme.4531

URL : https://hal.archives-ouvertes.fr/hal-01007060

S. Banihani, T. Rabczuk, and T. Almomani, POD for Real-Time Simulation of Hyperelastic Soft Biological Tissue Using the Point Collocation Method of Finite Spheres, Mathematical Problems in Engineering, vol.36, issue.11, 2013.
DOI : 10.1017/CBO9780511622700

S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, Fast porous visco-hyperelastic soft tissue model for surgery simulation: Application to liver surgery, Progress in Biophysics and Molecular Biology, vol.103, issue.2-3, pp.185-196, 2010.
DOI : 10.1016/j.pbiomolbio.2010.09.005

URL : https://hal.archives-ouvertes.fr/hal-00593223

J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg et al., Banded matrix approach to Finite Element modelling for soft tissue simulation, Virtual Reality, vol.102, issue.3, pp.203-212, 1999.
DOI : 10.1007/BF01418156

H. W. Nienhuys and A. F. Van-der-stappen, Combining finite element deformation with cutting for surgery simulations, Eurographics00, Interlaken, pp.20-25, 2000.

C. Monserrat, V. Hermandez, M. Alcaniz, M. C. Juan, and V. Grau, A new approach for the real-time simulation of tissue deformations in surgery simulation, Computer Methods and Programs in Biomedicine, vol.64, issue.2, pp.77-85, 2001.
DOI : 10.1016/S0169-2607(00)00093-6

G. Debunne, M. Desbrun, M. P. Cani, and A. H. Barr, Dynamic real-time deformations using space & time adaptive sampling, Proceedings of the 28th annual conference on Computer graphics and interactive techniques , SIGGRAPH '01, 2001.
DOI : 10.1145/383259.383262

URL : https://hal.archives-ouvertes.fr/inria-00510045

M. Nesme, M. Marchal, E. Promayon, M. Chabanas, Y. Payan et al., Physically realistic interactive simulation for biological soft tissues, Recent Res. Devel. Biomech, vol.2, pp.1-22, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00080378

F. Goulette and S. Chendeb, A framework for fast computation of hyperelastic materials deformations in real-time simulation of surgery, Computational Biomechanics for Medicine (CBM) Workshop of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Conference, pp.1-6, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01259670

M. Sasso, G. Palmieri, G. Chiappini, and D. Amodio, Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods, Polymer Testing, vol.27, issue.8, pp.995-1004, 2008.
DOI : 10.1016/j.polymertesting.2008.09.001

F. Peyraut, Z. Feng, N. Labed, and C. Renaud, A closed form solution for the uniaxial tension test of biological soft tissues, International Journal of Non-Linear Mechanics, vol.45, issue.5, pp.535-541, 2010.
DOI : 10.1016/j.ijnonlinmec.2010.02.003

URL : https://hal.archives-ouvertes.fr/hal-01176160

O. C. Zienkiewicz and R. L. Taylor, The finite element method, Fifth edition, 2000.

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 1993.

J. D. Humphrey, Mechanics of the arterial wall: review and directions, Crit. Rev. Biomed. Eng, vol.23, issue.12, pp.1-162, 1995.

J. S. Grashow, A. P. Yoganathan, and M. Sacks, Biaixal Stress???Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates, Annals of Biomedical Engineering, vol.109, issue.9, pp.315-325, 2006.
DOI : 10.1007/s10439-005-9027-y

K. Miller and K. Chinzei, Mechanical properties of brain tissue in tension, Journal of Biomechanics, vol.35, issue.4
DOI : 10.1016/S0021-9290(01)00234-2

Z. A. Taylor, O. Comas, . M. Cheng, D. J. Passenger, D. Hawkes et al., On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution, Medical Image Analysis, vol.13, issue.2, pp.234-244, 2009.
DOI : 10.1016/j.media.2008.10.001

R. W. Ogden, Non-linear elastic deformations, 1997.

M. Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.11, issue.9, pp.582-592, 1940.
DOI : 10.1063/1.1712836

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.835, pp.241379-397, 1948.
DOI : 10.1098/rsta.1948.0024

G. Venugopala-rao, C. Rubod, M. Brieu, N. Bhatnagar, and M. Cosson, Experiments and finite element modelling for the study of prolapse in the pelvic floor system, Computer Methods in Biomechanics and Biomedical Engineering, vol.19, issue.3, pp.349-357, 2010.
DOI : 10.1007/BF02534134

K. F. Noakes, A. J. Pullan, I. P. Bissett, and L. K. Cheng, Subject specific finite elasticity simulations of the pelvic floor, Journal of Biomechanics, vol.41, issue.14, pp.3060-3065, 2008.
DOI : 10.1016/j.jbiomech.2008.06.037

S. Majumder, A. Roychowdhury, and S. Pal, Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations, Journal of Biomechanics, vol.41, issue.13, pp.2834-2842, 2008.
DOI : 10.1016/j.jbiomech.2008.07.001

P. J. Flory, Thermodynamic relations for high elastic materials, Transactions of the Faraday Society, vol.57, pp.829-838, 1961.
DOI : 10.1039/tf9615700829

R. W. Ogden, Volume changes associated with the deformation of rubber-like solids, Journal of the Mechanics and Physics of Solids, vol.24, issue.6, pp.323-338, 1976.
DOI : 10.1016/0022-5096(76)90007-7

J. E. Bischoff, E. M. Arruda, and K. Grosh, A New Constitutive Model for the Compressibility of Elastomers at Finite Deformations, Rubber Chemistry and Technology, vol.74, issue.4, pp.541-559, 2001.
DOI : 10.5254/1.3544956

C. O. Horgan and G. Saccomandi, Finite thermoelasticity with limiting chain extensibility, Journal of the Mechanics and Physics of Solids, vol.51, issue.6, pp.1127-1146, 2003.
DOI : 10.1016/S0022-5096(02)00144-8

C. O. Horgan and G. Saccomandi, Constitutive Models for Compressible Nonlinearly Elastic Materials with Limiting Chain Extensibility, Journal of Elasticity, vol.46, issue.2, pp.123-138, 2004.
DOI : 10.1007/s10659-005-4408-x

C. O. Horgan and G. Saccomandi, Phenomenological Hyperelastic Strain-Stiffening Constitutive Models for Rubber, Rubber Chemistry and Technology, vol.79, issue.1, pp.152-169, 2006.
DOI : 10.5254/1.3547924

J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element analysis, 1997.
DOI : 10.1017/CBO9780511755446

G. Irving, J. Teran, and R. Fedkiw, Invertible finite elements for robust simulation of large deformation, Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation , SCA '04, pp.131-140, 2004.
DOI : 10.1145/1028523.1028541

J. C. Simo and K. S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Computer Methods in Applied Mechanics and Engineering, vol.46, issue.2, pp.201-215, 1984.
DOI : 10.1016/0045-7825(84)90062-8

F. Peyraut, Orientation preservation and Newton???Raphson convergence in the case of an hyperelastic sphere subjected to an hydrostatic pressure, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.9-10
DOI : 10.1016/S0045-7825(02)00560-1

Z. Feng, F. Peyraut, and N. Labed, A material-independent algorithm for preserving of the orientation of the spatial basis attached to deforming medium, Computational Mechanics, vol.40, pp.1053-1060, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01178714

X. Provot, Animation réaliste de vêtements, 1997.

R. Buttin, F. Zara, B. Shariat, T. Redarce, and G. Grangé, Biomechanical simulation of the fetal descent without imposed theoretical trajectory, Computer Methods and Programs in Biomedicine, vol.111, issue.2
DOI : 10.1016/j.cmpb.2013.04.005

URL : https://hal.archives-ouvertes.fr/hal-00841386

R. W. Ogden, Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids, Proc. R. Soc
DOI : 10.1098/rspa.1972.0096

R. W. Ogden, G. A. Holzapfel, and T. C. Gasser, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity, vol.61, pp.1-48, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01297725

G. A. Holzapfel, Determination of material models for arterial walls from uniaxial extension tests and histological structure, Journal of Theoretical Biology, vol.238, issue.2, pp.290-302, 2006.
DOI : 10.1016/j.jtbi.2005.05.006

URL : https://hal.archives-ouvertes.fr/hal-01299856

K. Fronek, Y. C. Fung, and P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression, Am J Physiol Heart Circ Physiol, vol.237, issue.5, pp.620-631, 1979.

X. Q. Peng, Z. Y. Guo, and B. Moran, An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Shear Interaction for the Human Annulus Fibrosus, Journal of Applied Mechanics, vol.73, issue.5, pp.815-824, 2006.
DOI : 10.1115/1.2069987