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Abstract  

New vapor-liquid equilibrium (VLE) data for 1-propanethiol + 1-butanethiol + CH4 ternary system is 

reported. Measurements were performed at three different temperatures (303, 336 and 368 K), while the 

pressure was ranged from1 to 9 MPa. The total system pressure was maintained by CH4. The inlet mole 

fraction of 1-propanethiol (x = 5.43  10
-1

) and 1n-butanethiol (x = 4.56  10
-1

) in the liquid phase were same 

in all experiments. A static analytic method was used for performing phase equilibrium measurements. The 

new VLE data have been modeled successfully with Cubic-Plus-Association (CPA) EoS.  
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1. Introduction 

The knowledge of thermodynamic properties of mixtures of sulfur compounds with hydrocarbons is 

important in the petroleum as well as in the chemical industry. An understanding of the thermo physical 

properties and equilibrium data of such mixtures facilitates the rationale design of processes for the removal 

sulfur compounds from petroleum streams and also for the purification of sulfur compounds in order to be 

used as chemical intermediates
1
. 1-propanethiol (n-propylmercaptan) and 1-butanethiol (n-butylmercaptan) 

are common organic sulfur components present in natural gas, synthesis gas and various refinery process 

streams. Their typical presence in the host gas stream can range from several parts per million to 5 percent 

by volume
2
. The environmental protection forces the petrochemical industry to decrease the sulfur content in 

the various petroleum fluids. Furthermore, any thiols/mercaptans (RSH) not absorbed from the sour gas 

through the amine purification units, complicate the process scheme for downstream liquid treatment units
3
. 

Consequently, the equilibrium data and thermo physical properties of thiols with methane, ethane, propane 

and other hydrocarbons  in the presence and absence of water is important to both process optimization and 

product specifications. 

This work is the continuation of our studies
4.5,6

 on the VLE and VLLE measurements of the systems 

containing CH4, water and thiols . Herein we measure new VLE data for ternary mixture 1-propanethiol 

(C3H7SH) + 1-butanethiol (C4H9SH) + methane (CH4) at three temperatures (303, 336, and 368 K) and 

pressures up to 9 MPa. The Cubic-Plus-Association (CPA) equation of state has been used to predict the new 

VLE ternary data with no adjustable parameters. 

2. Experimental section 

The experimental work has been carried out at Mines ParisTech, France, where a “static-analytic” 

technique based apparatus consisting of an equilibrium cell equipped with one moveable Rapid Online 

Sampler Injector (ROLSI
TM

) was used. The detail of the experimental setup has been discussed in our 

previous manuscript
7
. The equipment is the same used by Zehioua et al. 

8
 and the procedure is identical to 

Coquelet et al.
9
. The liquid and vapor samples are analyzed using a gas chromatograph (Varian model CP-

3800), equipped with a thermal conductivity detector (TCD), and a flame ionization detector (FID). CAS 

numbers, purities, and suppliers of materials are provided in table 1. no further purification of 

chemicals has made. 
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In the absence of air, 1-propanethiol (15 ml) was added into the equilibrium cell (32 cm
3
) followed 

by equal volumetric quantity of 1-butanethiol (10 ml). Then CH4 was added from the top of equilibrium to 

reach the desired pressure. The desired temperature was obtained by placing the cell into a thermo-regulated 

oil bath. The vapor and the organic (liquid) samples from equilibrium cell were directly introduced to the gas 

chromatograph once equilibrium was established. The samples are introduced through an isothermally heated 

transfer line.  Two 100 Ω platinum probes (Pt100) were used for temperature measurements which are 

inserted inside thermo-wells drilled into the body of the equilibrium cell at two different levels and are 

connected to an HP data acquisition unit. They were periodically calibrated against a 25 Ω reference 

platinum resistance thermometer (TINSLEY precision instruments, France). The expended standard 

uncertainty (0.95 level of confidence, k=2) in temperature measurements was estimated to be U(T)= 0.04 K. 

Pressure was measured by means of a Druck
TM

 pressure transducer (0.1 to 10 MPa), which was maintained at 

353.15 K. The pressure transducer was calibrated against a dead-weight pressure balance (Desgranges & 

Huot 5202S, CP 0.3-40 MPa, Aubervilliers, France). The expended standard uncertainty (0.95 level of 

confidence, k=2) in pressure measurements was estimated to be U(P)= 0.003 MPa. The gas chromatograph 

detectors were calibrated using chromatographic syringes with the relative standard uncertainties in mole 

numbers of 2 % in the TCD and 1.5 % in the FID, thus the expended uncertainty ( 0.95 level of confidence, 

k= 2) in mol fraction is Umax.( x or y, k=2)= 0.006 

The peaks of the individual components generated by gas chromatograph in liquid phase [CH4 (FID), 

C3H7SH (TCD), C4H9SH (TCD)] and in gas phase [CH4 (TCD), C3H7SH (FID), C4H9SH (FID)] were recorded 

using one RS-232 interface. These peaks are generated at specific retention time. The areas under the peaks 

correspond to the number of moles of the individual components, which come from the corresponding 

calibration.  All the experimental data point has been analyzed around 10 times, till we have consistent 

values. The standard deviation (
A
) on each experimental data point was calculated

7
 and presented in Table 

2. 

3. Modeling section 

The experimental data were modeled using the CPA EoS, whichin terms of the pressure is given as 
10,11

:  

( ) 1 ln
1 (1 )

( ) 2 i
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More details about the CPA EoS can be found in the literature
10,11

. The CPA EoS for thiols (mercaptan 

containing systems) has been described in our previous studies
5,6,7

. All fluids of this work (1-propanethiol 

(C3H7SH), 1-butanethiol (C4H9SH) and methane were modeled as non-self-associating fluids. The CPA EoS 
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pure component parameters (b/ L.mol
-1

, = a0/(R b)/ K and c1) for C3H7SH
5
, C4H9SH

7
, CH4

12 
and the binary 

Interaction parameters for C3H7SH-CH4 (kij=0.38)
 7

 and C4H9SH-CH4 (kij=0.38)
 7

 were adopted from 

literature. The binary interaction parameter between C3H7SH-C4H9SH is fixed equal to zero (kij=0.00), based 

on an assumption that such molecules have very similar structure. Having all pure and binary parameters 

from the corresponding binary systems the CPA EoS is used to predict the VLE of 1-propanethiol (C3H7SH) 

+1-propanethiol (C3H7SH) + methane (CH4). No adjustable parameter is optimized to the ternary 

experimental data.  

4. Results and discussion 

Vapor-liquid equilibrium (VLE) measurements for the 1-propanethiol + 1-butanethiol + CH4 ternary system 

were performed at three different temperatures (303, 335 and 368 K) and pressures up to 9 MPa. To the best 

of author knowledge no other experimental phase equilibrium data for such ternary system exists in the open 

literature and, consequently, a comparison of the new experimental data, presented in Table 2, is not 

possible. As shown in figure 1, the solubility of methane (CH4) in the 1-propanethiol - 1-butanethiol rich 

liquid phase increases with the increase of total system pressure and temperature . The gas phase content of 

1-propanethiol (C3H7SH) and 1-butanethiol (C4H9SH) decreases slightly with increase of pressure and 

increases significantly with the increase of temperature as shown in figure 2. It can be also observed that the 

gas phase content of 1-propanethiol (C3H7SH) is always superior to 1-butanethiol (C4H9SH) at the same 

temperature and pressure, as it is expected. 

The CPA EoS predictions for the vapor-liquid equilibrium of 1-propanehiol (C3H7SH) + 1-butanethiol 

(C4H9SH) + methane (CH4) ternary system at 303, 335 and 368 K and up to 9 MPa are shown in figures 1, 2 

and 3 respectively.  It is observed that deviation between the experimental data and the CPA predictions is 

sometimes higher than 20 %. The CPA results are pure predictions as no parameters were adjusted to the 

experimental data. From this point of view, the CPA rather satisfactorily predicts the vapor-liquid regions for 

1-propanethiol + 1-butanethiol + CH4 ternary system.  

5. Conclusion 

New vapor-liquid equilibrium (VLE) data for the 1-propanethiol + 1-butanethiol + CH4 has been obtained at 

three temperatures (303, 335, and 368 K) and pressures up to 9 MPa. A “static-analytic” method was 

successfully used for performing all the measurements. The CPA EoS has been applied for the representation 

of ternary systems containing 1-propanethiol and 1-butanethiol. The modeling results are considered 

satisfactory as they are just predictions without the adjustment of any parameter to the ternary experimental 

data. 
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Table 1. CAS numbers, purities, and suppliers of materials. 

 

Chemical Name Source 
Mole fraction 

purity* 
CAS No. 

1-Propanethiol (C3H7SH) ACROS ≥ 0.99 107-03-9 

1-Butanethiol (C4H9SH) ACROS ≥ 0.99 109-79-5 

Methane (CH4) Messer 0.998 74-82-8 

 Information provided by suppliers. 
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Table 2. Experimental Vapor-liquid Equilibrium Data for the 1-propanethiol (C3H7SH) + 1-

butanethiol (C4H9SH) + methane (CH4) ternary mixture 

 

T/K P/MPa yCH4 yC3H7SH yC4H9SH T/K P/MPa xCH4 xC3H7SH xC4H9SH 

302.92 0.652 0.891 0.059 0.050 302.98 0.653 0.015 0.432 0.553 

303.00 1.715 0.968 0.019 0.013 303.06 1.716 0.046 0.429 0.525 

303.06 2.505 0.975 0.014 0.010 303.08 2.507 0.066 0.430 0.504 

303.18 3.687 0.989 0.007 0.004 303.18 3.689 0.101 0.429 0.470 

303.19 4.784 0.989 0.007 0.005 303.19 4.785 0.132 0.419 0.449 

303.09 6.478 0.988 0.007 0.005 303.09 6.481 0.173 0.398 0.429 

303.02 7.916 0.989 0.007 0.005 303.08 7.928 0.200 0.384 0.416 

336.14 1.486 0.892 0.062 0.046 336.11 1.491 0.035 0.435 0.531 

336.16 2.550 0.931 0.041 0.028 336.05 2.554 0.064 0.422 0.514 

336.15 4.371 0.967 0.018 0.015 336.15 4.377 0.114 0.413 0.474 

336.11 5.320 0.969 0.017 0.013 336.11 5.325 0.137 0.396 0.467 

335.99 6.533 0.969 0.017 0.013 335.97 6.538 0.165 0.389 0.445 

335.98 8.100 0.971 0.016 0.013 335.97 8.108 0.201 0.369 0.430 

335.76 9.078 0.970 0.016 0.014 336.02 9.088 0.223 0.361 0.415 

367.59 1.541 0.902 0.051 0.046 367.84 1.562 0.033 0.393 0.574 

368.78 2.145 0.918 0.046 0.036 368.91 2.195 0.050 0.389 0.561 

367.89 3.398 0.934 0.038 0.028 367.94 3.405 0.081 0.379 0.540 

366.45 4.325 0.944 0.032 0.024 366.78 4.396 0.102 0.371 0.527 

368.16 5.216 0.948 0.029 0.023 368.36 5.309 0.128 0.367 0.505 

368.10 6.454 0.953 0.027 0.020 368.54 6.480 0.152 0.361 0.487 

368.53 7.560 0.953 0.027 0.020 368.56 7.565 0.175 0.347 0.478 

 

The expended standard uncertainties with 0.95 level of confidence (k=2) are U(T)= 0.04, U(P)=0.003, U( x 

or y)=0.009; where y stands for mole fraction in vapor phase and x stands for mole fractions in organic 

phase. 
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Figure 1. The solubility of CH4 in the liquid 1-propanehiol (C3H7SH) + 1-butanethiol (C4H9SH) rich phase at 

303 K ; () , 335 K ; (), 365 K ; (), Solid lines: CPA EoS Predictions, error band ± 5%. 
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Figure 2. Mole fraction of 1-propanehiol (C3H7SH)  and 1-butanethiol (C4H9SH) in the vapor phase Vapor 

phase mole fraction of 1-propanehiol at 303 K ; () , 335 K ; (), 368 K ; (), Vapor phase mole fraction 1-

butanethiol at 303 K ; () , 335 K ; (), 368 K ; (),dotted lines: CPA EoS predictions for 1-propanethiol 

vapor phase content, solid lines: CPA EoS predictions of 1-butanethiol vapor phase content. 
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Figure 3. Vapor-liquid equilibria of 1-propanehiol (C3H7SH) + 1-butanethiol (C4H9SH) + methane (CH4).1-

propanethiol liquid phase mole fraction at 303 K ; () , 335 K ; (), 368 K ; (),1-propanethiol vapor phase 

mole fraction at 303 K ; () , 335 K ; (), 368 K ; (), Solid lines: CPA EoS predictions. 


