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SUMMARY
Classical approaches to geostatistical simulations are not applicable directly on irregular reservoir models
(such as Voronoi polygon and tetrahedron meshed models). One of the main difficulties is that the block
marginal distributions are unique for every block due to volume support effect. We propose a methodology
for geostatistical simulations which overcomes this difficulty in an analytical manner and provides a
robust utilization of the small support petrophysical property distribution and the covariance model for
irregular reservoir models. The proposed solution is based on the discrete Gaussian (DGM) model and
operates directly on blocks of the target grid. This solution is also capable to improve the quality of the
classical reservoir models, such as tartan meshes, by including the volume support effect into
consideration and thus-providing geologically more realistic results. Applications to Voronoi polygon grid
with local grid refinements and to a tartan-meshed offshore gas reservoir model are demonstrated.
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Introduction 

Geostatistical simulation on irregular grids is a challenging task, since the algorithms face a multi-
scale problem posed by the transition from the small scale core analysis and seismic data to the 
multiple uneven supports of the grid cells. Classical sequential Gaussian simulation (SGS) is not 
applicable on irregular support, since the data does not average linearly after the normal score 
transform.  
One approach to overcome this difficulty is using direct sequential simulation (DSS) algorithms, 
which avoid the transformation to the space of Gaussian variables and work directly in the space of 
the simulated variable (Manchuk et al. 2005, Soares 2001). Another approach for simulating on 
irregular support with the methods of non-linear geostatistics was proposed by Brown et al. (2008). 
The authors demonstrate the application of discrete Gaussian model (DGM) for simulating the Cox 
process using multiple sample supports representing the samples as a tree graphical model and using 
an extended conditional independence assumption. The solution is based on a theoretical model 
proposed by Emery (2007) for conditional simulations on regular support using DGM. 
 
In this paper we provide an extension of the DGM-based geostatistical simulation algorithm for 
petroleum reservoirs, which uses the small support covariance derived from the data analysis and 
approximates with high accuracy the block-support marginal distributions. We first present two 
methods of transforming the problem of simulation on an irregular grid to the problem of simulating 
multivariate Gaussian random vectors. Then we demonstrate an application for simulating porosity on 
a tartan-meshed offshore gas field with significant volumetric differences between the cells. 

Discrete Gaussian model for geostatistical simulations 

Consider the problem of simulating on an irregular grid ൛ݒ௣, ݌ ൌ 1…ܰൟ the volumetric averages 

ܼ൫ݒ௣൯ ൌ
ଵ

|௩೛|
׬ ܼሺݔሻ݀ݔ௩೛

 of the point-support random variable (RV)  ܼሺݔሻ with a covariance function 

,ݔሺܥ  ௣ሻ cannot be determinedݒሻ. Without additional assumptions, the marginal distribution of ܼሺ′ݔ
analytically from the distribution of ܼሺݔሻ and a Monte Carlo approach is applied, which in this 
context is referred to as mini-model simulation.  
In case of irregular grids, the mini-model approach is hardly applicable, since it requires multiple fine 
scale simulations for every block of the model. The proposed simulation model enables to derive the 
blocks marginal distributions in an analytical form by introducing additional theoretical assumptions. 
The model assumes that  ܼሺݔሻ is a transformation of a standard Gaussian RV ܻሺݔሻ with a covariance 
function ߩሺݔ,  ௣ሻ is a block-dependent transformation of a standardݒሻ and that every block value ܼሺ′ݔ
Gaussian RV ௩ܻ೛ 

 ܼሺݔሻ ൌ 	߮ሺܻሺݔሻሻ  and  ܼ൫ݒ௣൯ ൌ ߮௩೛ሺ ௩ܻ೛ሻ, ݌ ൌ 1…ܰ (1)

The transform function ߮ሺݕሻ can be fitted to the core sample values and is considered to be known. 
The DGM approach enables to shift from the problem of simulating the set of RV ൛ܼ൫ݒ௣൯, ݌ ൌ 1…ܰൟ 
to a problem of simulating a stationary multivariate Gaussian random vector ൫ ௩ܻభ, … , ௩ܻಿ൯ and 
applying appropriate transformation functions ߮௩೛, ݌ ൌ 1…ܰ. The DGM in the strong form (DGM 1, 

see Chilès (2014) for discussion) can be established with the following two assumptions:  
i. The vector ൫ ௩ܻభ, … , ௩ܻಿ൯ is multivariate Gaussian; 

ii. For every block v୮	the joint distribution of ௩ܻ೛  and ܻሺݔሻ within ݒ௣ is bivariate Gaussian with 

correlation coefficient ݎ௣ (where x denotes a uniformly random point within a block). 
The block-dependent transform function ߮௩೛ሺݕሻ can be determined from the change of support 

coefficient ݎ௣ for block ݒ௣ and the decomposition of ߮ሺݕሻ in the basis of normalized Hermite 
polynomials ሼ߯௜ሺݕሻ, ݅ ൌ 0…൅ ∞ሽ (Chilès and Delfiner 2012)  

  ߮ሺݕሻ ൌ 	∑ ߮௜߯௜ሺݕሻ
ஶ
௜ୀ଴ ⇒ ߮௩೛ሺݕሻ ൌ ∑ ߮௜ݎ௩೛

௜ ߯௜ሺݕሻ
ஶ
௜ୀ଴  (2)

Where the change of support coefficient ݎ௣ for every block is defined by the equation  
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And the covariance matrix for ൫ ௩ܻభ, … ௩ܻಿ൯ is defined by equations 

 
1

|௤ݒ||௣ݒ|
න න ,ݔሺܥ ᇱݔ݀ݔᇱሻ݀ݔ

௩೜௩೛

ൌ ෍߮௜
ଶݎ௣௜ݎ௤௜ܿݒ݋ ቀ ௩ܻ೛, ௩ܻ೜ቁ

௜
ஶ

௜ୀଵ

 (4)

The multivariate Gaussian random vector ൫ ௩ܻభ, … ௩ܻಿ൯ can then be simulated using standard 
techniques, for instance SGS (Chilès and Delfiner 2012). Applying the transformation functions 
߮௩೛	ሺݕሻ, ݌ ൌ 1…ܰ gives an unconditional simulation of block average values ሼܼ൫ݒ௣൯, ݌ ൌ 1…ܰሽ 
honoring the covariance function ܥሺݔ,  ሻ and approximating with high accuracy the block marginal′ݔ
distributions (Chilès 2014, Chilès and Delfiner 2012, Matheron 1985). The simulated unconditional 
field can then be conditioned using block or point-support samples through simple or ordinary kriging 
and uniform conditioning (de Fouquet 1994). 
 Another convenient way of applying DGM for geostatistical simulations consists in introducing an 
additional assumption, which leads to a weak DGM model – DGM 2 
iii. for any two blocks ݒ௣ and ݒ௤, the joint distribution of ܻ൫ݔ൯, ݔ ∈ ,൯′ݔ௣ and ܻ൫ݒ ′ݔ ∈  ௤ isݒ

bivariate Gaussian.  
Introducing this additional assumption enables a simpler way of deriving the block-support 
coefficients ݎ௣ and the correlation between the components of ൫ ௩ܻభ, … ௩ܻಿ൯ through the covariance 
,ݔሺߩ  ሻ as demonstrated by Emery (2007)ݔሻ of ܻሺ′ݔ
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DGM 2 enables establishing the simulation model in a simpler manner relative to DGM 1 by the cost 
of introduction a small bias into the model. Formally, using DGM 2 for simulation does not guarantee 
the correct reproduction of the covariance of the random vector ൫ܼሺݒଵሻ, … ܼሺݒேሻ൯ due to assumption 
iii which is discussed by Chilès (2014). 

Difference between DGM 1 and DGM 2 

In order to demonstrate the difference between DGM 1 and DGM 2, we provide statistical analysis of 
100000 unconditional simulations on a Voronoi polygon 2D grid with 10 local grid refinements. The 
grid size is 20x20 km2 with a vast diversity of block sizes demonstrated on Figure 1.  

Figure 1 Voronoi-meshed 2D grid with 10 local grid refinements. Left) The block volumes and the 
well locations on the studied grid. Right) A simulation produced by DGM 2. 

The grid contains 3546 blocks; the smallest and the largest block sizes are 36x42 and 1035x1052 m 
respectively. The simulated variable ܼሺݔሻ has a standard lognormal distribution with logarithmic 
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parameters ሺ0,1ሻ and the covariance 	ߩሺݔ,  ሻ is isotropicݔሻ of the normal score transform variable ܻሺ′ݔ
spherical with range 250 m.  

In order to check the accuracy of DGM 1 and DGM 2, we compare the block marginal distributions 
implied by these models with the results of 50 000 Monte Carlo simulations on 2x2m2 support. The 
difference between the observed block variance and the theoretical variance is also illustrated (Figure 
2). It reveals that DGM 2 introduces a non-linear bias into the block distribution variance, which, 
however, is below 5% of the point support variance of ܼሺݔሻ. 

 

Figure 2 Quality check for DGM 1 and DGM 2. Left) The distribution for the largest block in the 
model. Right) The observed mismatch of the block variance versus block volume. 

Simulation of porosity on an offshore field tartan grid 

Addressing the change of support problem in geostatistical algorithms not only provides a solution for 
populating fully unstructured grids (such as Voronoi and tetrahedron meshing) but also enables to 
ameliorate the simulation results for classical tartan grids. Consider a tartan mesh of an offshore gas 
field X with dimensions 140x200x2 km3 (Figure 3).   

Figure 3 Tartan meshed offshore gas field model. Left) Original model. Right) Corresponding 
GeoChron model. 

The classical approach consists of defining an average support for the model and the marginal 
distribution of porosity on this average support using Monte-Carlo simulations. The classical 
simulation proceeds in the IJK space, which leads to incorrect reproduction of block distributions and 
covariance. In order to treat the volume support effect in the simulation process, a proper simulation 
space is required in which the hypothesis of the stationary covariance model is applicable and the 
meshing structure of the reservoir is preserved. We adopt the GeoChron model  (Mallet 2014)  
corresponding to the target reservoir meshed model to perform DGM-based simulations (Figure 3). 
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Figure 4 Result comparison. Left) Classical simulation in IJK on “average support”. Right) 
Simulation in GeoChron model with DGM-based algorithm. 

Conclusions 

We propose a framework for geostatistical simulations on irregular reservoir grids using DGM. The 
proposed framework enables exact integration of the point-support covariance model on irregular 
support and approximating with high accuracy the block marginal distributions. It also enables to 
avoid the usage of the “average support” concept for simulations and to work on the target mesh 
directly. In addition, the proposed approach eliminates the artefacts imposed by the mesh, providing 
geologically more realistic full-size models.  
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