A. Ambos, F. Willot, D. Jeulin, and H. Trumel, Numerical modeling of the thermal expansion of an energetic material, International Journal of Solids and Structures, vol.60, issue.61, pp.60-61125, 2015.
DOI : 10.1016/j.ijsolstr.2015.02.025

URL : https://hal.archives-ouvertes.fr/hal-01118112

D. Azzimonti, F. Willot, and D. Jeulin, Optical properties of deposit models for paints: full-fields FFT computations and representative volume element, Journal of Modern Optics, vol.32, issue.7, pp.519-528, 2013.
DOI : 10.1017/CBO9780511613357

URL : https://hal.archives-ouvertes.fr/hal-00836118

M. C. Bergström and J. S. Boyce, Constitutive modeling of the large strain time-dependent behavior of elastomers, Journal of the Mechanics and Physics of Solids, vol.46, issue.5, pp.931-954, 1998.
DOI : 10.1016/S0022-5096(97)00075-6

S. Brisard and L. Dormieux, FFT-based methods for the mechanics of composites: A general variational framework, Computational Materials Science, vol.49, issue.3, pp.663-671, 2010.
DOI : 10.1016/j.commatsci.2010.06.009

URL : https://hal.archives-ouvertes.fr/hal-00722339

R. Christensen, Theory of Viscoelasticity, Journal of Applied Mechanics, vol.38, issue.3, 2012.
DOI : 10.1115/1.3408900

I. Cohen, Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres, Journal of the Mechanics and Physics of Solids, vol.52, issue.9, pp.2167-2183, 2004.
DOI : 10.1016/j.jmps.2004.02.008

A. Delarue and D. Jeulin, 3D MORPHOLOGICAL ANALYSIS OF COMPOSITE MATERIALS WITH AGGREGATES OF SPHERICAL INCLUSIONS, Image Analysis & Stereology, vol.22, issue.1, pp.153-161, 2003.
DOI : 10.5566/ias.v22.p153-161

D. J. Eyre and G. W. Milton, A fast numerical scheme for computing the response of composites using grid refinement, The European Physical Journal Applied Physics, vol.6, issue.1, pp.41-47, 1999.
DOI : 10.1051/epjap:1999150

M. Faessel and D. Jeulin, 3D multiscale vectorial simulations of random models, Proc. ICS13, pp.19-22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00879688

L. V. Gibiansky and G. W. Milton, On the Effective Viscoelastic Moduli of Two-Phase Media. I. Rigorous Bounds on the Complex Bulk Modulus, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.440, issue.1908, pp.440163-188, 1908.
DOI : 10.1098/rspa.1993.0010

Z. Hashin, Complex moduli of viscoelastic composites???I. General theory and application to particulate composites, International Journal of Solids and Structures, vol.6, issue.5, pp.539-552, 1970.
DOI : 10.1016/0020-7683(70)90029-6

A. Jean, D. Jeulin, S. Forest, S. Cantournet, and F. N-'guyen, A multiscale microstructure model of carbon black distribution in rubber, Journal of Microscopy, vol.49, issue.21, pp.243-260, 2011.
DOI : 10.1111/j.1365-2818.2010.03428.x

URL : https://hal.archives-ouvertes.fr/hal-00585338

A. Jean, F. Willot, S. Cantournet, S. Forest, and D. Jeulin, LARGE-SCALE COMPUTATIONS OF EFFECTIVE ELASTIC PROPERTIES OF RUBBER WITH CARBON BLACK FILLERS, International Journal for Multiscale Computational Engineering, vol.9, issue.3, pp.271-303, 2011.
DOI : 10.1615/IntJMultCompEng.v9.i3.30

URL : https://hal.archives-ouvertes.fr/hal-00661612

D. Jeulin, Modèles morphologiques de structures aléatoires et de changement d'´ echelle, Thèse d'´ etat, 1991.

D. Jeulin, Multi Scale Random Models of Complex Microstructures, Materials Science Forum, vol.638, issue.642, pp.81-86, 2010.
DOI : 10.4028/www.scientific.net/MSF.638-642.81

URL : https://hal.archives-ouvertes.fr/hal-00834491

D. Jeulin, Morphology and effective properties of multi-scale random sets: A review, Comptes Rendus M??canique, vol.340, issue.4-5, pp.219-229, 2012.
DOI : 10.1016/j.crme.2012.02.004

D. Jeulin and A. L. Cöent, Morphological modeling of random composites, Proceedings of the CMDS8 58 Conference, 1996.

V. Jha, A. Thomas, Y. Fukahori, and J. Busfield, Micro-structural finite element modelling of the stifness of filled elastomers: the effect of filler number,shape and position in the rubber matrix, Proceedings of 5th European Conference on Constitutive Models for Rubber, 2007.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.403647-3679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

L. Laiarinandrasana, A. Jean, D. Jeulin, and S. Forest, Modelling the effects of various contents of fillers on the relaxation rate of elastomers, Materials & Design, vol.33, pp.75-82, 2012.
DOI : 10.1016/j.matdes.2011.06.054

URL : https://hal.archives-ouvertes.fr/hal-00624105

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol.2, issue.2, pp.164-168, 1944.
DOI : 10.1090/qam/10666

G. Matheron, Introduction aux ensembles aléatoires, 1969.

G. Matheron, Random sets and integral geometry, 1975.

F. Meyer, Iterative image transformations for an automatic screening of cervical smears., Journal of Histochemistry & Cytochemistry, vol.27, issue.1, pp.128-135, 1979.
DOI : 10.1177/27.1.438499

J. C. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non???linear composites with arbitrary phase contrast, International Journal for Numerical Methods in Engineering, vol.58, issue.12, pp.139-160, 2001.
DOI : 10.1002/nme.275

G. W. Milton and J. G. Berryman, On the effective viscoelastic moduli of two-phase media. II. Rigorous bounds on the complex shear modulus in three dimensions, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.1849-1880, 1997.
DOI : 10.1098/rspa.1997.0100

J. Møller, Random tessellations in ???d, Advances in Applied Probability, vol.2, issue.01, pp.37-73, 1989.
DOI : 10.1002/mana.19800970118

J. Møller, Random Johnson-Mehl tessellations Advances in applied probability, pp.814-844, 1992.

M. Moreaud and D. Jeulin, Multi-scale simulation of random spheres aggregates: Application to nanocomposites, Proceedings of the ECS 9 Conference, pp.341-348, 2005.

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and non linear mechanical properties of the composites. Comptes rendus de l'Academie des sciences, Série II, issue.11, pp.3181417-1423, 1994.

M. Naito, K. Muraoka, K. Azuma, and Y. Tomita, 3D modeling and simulation of micro to macroscopic deformation behavior of filled rubber, Proceedings of 5th European Conference on Constitutive Models for Rubber, 2007.

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.308-313, 1965.
DOI : 10.1093/comjnl/7.4.308

L. Savary, D. Jeulin, and A. Thorel, Morphological analysis of carbon-polymer composite materials from thick sections, Acta Stereologica (Slovenia), vol.18, issue.3, pp.297-303, 1999.

R. Schneider and W. Weil, Stochastic and integral geometry, 2008.
DOI : 10.1007/978-3-540-78859-1

J. Serra, Image analysis and mathematical morphology, 1982.

D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications., Biometrics, vol.45, issue.2, 1995.
DOI : 10.2307/2531521

V. Vinogradov and G. W. Milton, An accelerated FFT algorithm for thermoelastic and non-linear composites, International Journal for Numerical Methods in Engineering, vol.34, issue.1-2, p.761678, 2008.
DOI : 10.1002/nme.2375

F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields, Comptes rendus de l'Académie des Sciences: Mécanique, pp.232-245, 2015.
DOI : 10.1016/j.crme.2014.12.005

URL : https://hal.archives-ouvertes.fr/hal-01096757

F. Willot, B. Abdallah, and Y. Pellegrini, Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, International Journal for Numerical Methods in Engineering, vol.94, issue.6, pp.518-533, 2014.
DOI : 10.1002/nme.4641

URL : https://hal.archives-ouvertes.fr/hal-00840986

F. Willot and Y. Pellegrini, Fast Fourier transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise-disordered porous media, Continuum Models and Discrete Systems CMDS 11, pp.443-449, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00412544

M. Zähle, Random cell complexes and generalised sets. The Annals of Probability, pp.1742-1766, 1988.