Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit

Ananda Roy 1, 2, 3 Zaki Leghtas 1, 2, 4 A. Douglas Stone 2 Michel Devoret 2 Mazyar Mirrahimi 1, 2
1 QUANTIC - QUANTum Information Circuits
ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6, MINES ParisTech - École nationale supérieure des mines de Paris, CNRS - Centre National de la Recherche Scientifique : UMR8551
Abstract : While dissipation is widely considered to be harmful for quantum coherence, it can, when properly engineered, lead to the stabilization of nontrivial pure quantum states. We propose a scheme for continuous generation and stabilization of Schrödinger cat states in a cavity using dissipation engineering. We first generate nonclassical photon states with definite parity by means of a two-photon drive and dissipation, and then stabilize these transient states against single-photon decay. The single-photon stabilization is autonomous, and is implemented through a second engineered bath, which exploits the photon-number-dependent frequency splitting due to Kerr interactions in the strongly dispersive regime of circuit QED. Starting with the Hamiltonian of the baths plus cavity, we derive an effective model of only the cavity photon states along with analytic expressions for relevant physical quantities, such as the stabilization rate. The deterministic generation of such cat states is one of the key ingredients in performing universal quantum computation
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01266483
Contributeur : François Chaplais <>
Soumis le : mardi 2 février 2016 - 18:00:25
Dernière modification le : mardi 14 mai 2019 - 10:16:07

Identifiants

  • HAL Id : hal-01266483, version 1

Citation

Ananda Roy, Zaki Leghtas, A. Douglas Stone, Michel Devoret, Mazyar Mirrahimi. Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit. Physical Review, American Physical Society (APS), 2015, 91 (1), pp.013810. ⟨hal-01266483⟩

Partager

Métriques

Consultations de la notice

553