A. Rabis, P. Rodriguez, and T. Schmidt, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges, ACS Catalysis, vol.2, issue.5, pp.864-890, 2012.
DOI : 10.1021/cs3000864

P. Costamagna and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000, Journal of Power Sources, vol.102, issue.1-2, pp.242-252, 2001.
DOI : 10.1016/S0378-7753(01)00807-2

E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental, vol.88, issue.1-2, pp.1-24, 2009.
DOI : 10.1016/j.apcatb.2008.09.030

S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, Carbon support oxidation in PEM fuel cell cathodes, Journal of Power Sources, vol.176, issue.2, pp.444-451, 2008.
DOI : 10.1016/j.jpowsour.2007.08.053

K. Yasuda, A. Taniguchi, T. Akita, T. Ioroi, and Z. Siroma, Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling, Phys. Chem. Chem. Phys., vol.29, issue.6, pp.746-752, 2006.
DOI : 10.1039/B514342J

K. Sasaki, S. Hayashi, K. Kanda, Y. Takabatake, T. Tsukatsune et al., Alternative Electrocatalyst Support Materials for Polymer Electrolyte Fuel Cells. The Electrochem Soc Meeting Abstracts, 1684.

V. Gokulakrishnan, S. Parthiban, K. Jeganathan, and K. Ramamurthi, Investigations on the structural, optical and electrical properties of Nb-doped SnO2 thin films, Journal of Materials Science, vol.12, issue.16, pp.5553-5558, 2011.
DOI : 10.1007/s10853-011-5504-x

D. Szczuko, J. Werner, S. Oswald, G. Behr, and K. Wetzig, XPS investigations of surface segregation of doping elements in SnO2, Applied Surface Science, vol.179, issue.1-4, pp.1-4301, 2001.
DOI : 10.1016/S0169-4332(01)00298-7

J. Bressand and B. Royer, Electrochromic device with controlled infrared reflection, 2009.

S. Megahed and W. Ebner, Lithium-ion battery for electronic applications, Journal of Power Sources, vol.54, issue.1, pp.155-162, 1995.
DOI : 10.1016/0378-7753(94)02059-C

I. Courtney, R. Dunlap, J. Dahn, M. Fuller, and M. Warwick, In-situ 119Sn M??ssbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass, Electrochimica Acta, vol.45, issue.1-2, pp.51-58441, 1972.
DOI : 10.1016/S0013-4686(99)00192-9

T. Matsui, K. Fujiwara, T. Okanishi, R. Kikuchi, T. Takeguchi et al., Electrochemical oxidation of CO over tin oxide supported platinum catalysts, Journal of Power Sources, vol.155, issue.2, pp.152-156, 2006.
DOI : 10.1016/j.jpowsour.2005.05.003

H. Herniman, D. Pyke, and R. Reid, An investigation of the relationship between the bulk and surface composition of tin and antimony mixed oxide catalysts and the oxidative dehydrogenation of 1-butene to butadiene, Journal of Catalysis, vol.58, issue.1, pp.8-73, 1979.
DOI : 10.1016/0021-9517(79)90245-8

J. Viricelle, A. Valleron, C. Pijolat, P. Breuil, and S. Ott, Gas Sensors Based on Tin Dioxide for Exhaust Gas Application, Modeling of Response for Pure Gases and for Mixtures, 26th European Conference on Solid-State Transducers, pp.655-658, 2012.
DOI : 10.1016/j.proeng.2012.09.232

URL : https://hal.archives-ouvertes.fr/hal-00773735

S. Shukla, S. Patil, S. Kuiry, Z. Rahman, T. Du et al., Synthesis and characterization of sol???gel derived nanocrystalline tin oxide thin film as hydrogen sensor, Sensors and Actuators B: Chemical, vol.96, issue.1-2, pp.343-353, 2003.
DOI : 10.1016/S0925-4005(03)00568-9

N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, vol.121, issue.1, pp.18-35, 2007.
DOI : 10.1016/j.snb.2006.09.047

A. Masao, S. Noda, F. Takasaki, K. Ito, and K. Sasaki, Carbon-Free Pt Electrocatalysts Supported on SnO[sub 2] for Polymer Electrolyte Fuel Cells, Electrochemical and Solid-State Letters, vol.12, issue.9, pp.119-122, 2009.
DOI : 10.1149/1.3152325

Y. Takabatake, Z. Noda, S. Lyth, A. Hayashi, and K. Sasaki, Cycle durability of metal oxide supports for PEFC electrocatalysts, International Journal of Hydrogen Energy, vol.39, issue.10, pp.5074-5082, 2014.
DOI : 10.1016/j.ijhydene.2014.01.094

P. Zhang, S. Huang, and B. Popov, Mesoporous Tin Oxide as an Oxidation-Resistant Catalyst Support for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, vol.157, issue.8, pp.1163-1172, 2010.
DOI : 10.1149/1.3442371

S. Andersen, C. Norgaard, M. Larsen, and E. Skou, Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cells, Journal of Power Sources, vol.273, pp.158-161, 2015.
DOI : 10.1016/j.jpowsour.2014.09.051

T. Matsui, T. Kanishi, K. Fujiwara, K. Tsutsui, R. Kikuchi et al., Effect of reduction???oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts, Science and Technology of Advanced Materials, vol.245, issue.6, pp.524-530, 2006.
DOI : 10.1021/ja0214781

T. Okanishi, T. Matsui, T. Takeguchi, R. Kikuchi, and K. Eguchi, Chemical interaction between Pt and SnO and influence on adsorptive properties of carbon monoxide, Applied Catalysis A: General, vol.298, pp.181-187, 2006.
DOI : 10.1016/j.apcata.2005.09.035

M. Arenz, V. Stamenkovic, B. Blizanac, K. Mayrhofer, N. Markovic et al., Carbon-supported Pt???Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures.Part II: The structure???activity relationship, CO, and H, pp.402-410, 2005.
DOI : 10.1016/j.jcat.2005.03.022

F. Takasaki, S. Matsuie, Y. Takabatake, Z. Noda, A. Hayashi et al., Carbon-Free Pt Electrocatalysts Supported on SnO2 for Polymer Electrolyte Fuel Cells: Electrocatalytic Activity and Durability, Journal of The Electrochemical Society, vol.158, issue.10, pp.1270-1275, 2011.
DOI : 10.1149/1.3625918

K. Kakinuma, Y. Chino, Y. Senoo, M. Uchida, T. Kamino et al., Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2????? support materials with aggregated structure by rotating disk electrode and fuel cell measurements, Electrochimica Acta, vol.110, pp.316-324, 2013.
DOI : 10.1016/j.electacta.2013.06.127

S. Cavaliere, S. Subianto, I. Savych, M. Tillard, D. Jones et al., Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells, The Journal of Physical Chemistry C, vol.117, issue.36, pp.18298-18307, 2013.
DOI : 10.1021/jp404570d

URL : https://hal.archives-ouvertes.fr/hal-00903703

S. Shahgaldi and J. Hamelin, The effect of low platinum loading on the efficiency of PEMFC???s electrocatalysts supported on TiO2???Nb, and SnO2???Nb: An experimental comparison between active and stable conditions, Energy Conversion and Management, vol.103, pp.681-690, 2015.
DOI : 10.1016/j.enconman.2015.06.050

K. Kakinuma, M. Uchida, T. Kamino, H. Uchida, and M. Watanabe, Synthesis and electrochemical characterization of Pt catalyst supported on Sn0.96Sb0.04O2????? with a network structure, Electrochimica Acta, vol.56, issue.7, pp.2881-2887, 2011.
DOI : 10.1016/j.electacta.2010.12.077

M. Gurrola, M. Guerra-balcazar, L. Alvarez-contreras, R. Nava, J. Ledesma-garcia et al., High surface electrochemical support based on Sb-doped SnO2, Journal of Power Sources, vol.243, pp.826-830, 2013.
DOI : 10.1016/j.jpowsour.2013.06.078

D. You, K. Kwon, C. Pak, and H. Chang, Platinum???antimony tin oxide nanoparticle as cathode catalyst for direct methanol fuel cell, Catalysis Today, vol.146, issue.1-2, pp.15-19, 2009.
DOI : 10.1016/j.cattod.2008.12.004

M. Yin, J. Xu, Q. Li, J. Jensen, Y. Huang et al., Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions, Applied Catalysis B: Environmental, vol.144, pp.112-120, 2014.
DOI : 10.1016/j.apcatb.2013.07.007

H. Oh, H. Nong, and P. Strasser, Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells, Advanced Functional Materials, vol.396, issue.45, pp.1074-1081, 2015.
DOI : 10.1002/adfm.201401919

Y. Senoo, K. Taniguchi, K. Kakinuma, M. Uchida, H. Uchida et al., Cathodic performance and high potential durability of Ta-SnO2?????-supported Pt catalysts for PEFC cathodes, Electrochemistry Communications, vol.51, pp.37-40, 2015.
DOI : 10.1016/j.elecom.2014.12.005

V. Avila-vazquez, M. Galvan-valencia, J. Ledesma-garcia, L. Arriaga, V. Collins-martinez et al., Electrochemical performance of a Sb-doped SnO2 support synthesized by coprecipitation for oxygen reactions, Journal of Applied Electrochemistry, vol.13, issue.15, pp.1175-1185, 2015.
DOI : 10.1007/s10800-015-0876-2

E. Leite, I. Weber, E. Longo, and J. Varela, A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications, Advanced Materials, vol.12, issue.13, p.965, 2000.
DOI : 10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7

S. J. Tauster and S. Fung, Strong metal-support interactions: Occurrence among the binary oxides of groups IIA?VB, Journal of Catalysis, vol.55, issue.1, pp.29-35, 1978.
DOI : 10.1016/0021-9517(78)90182-3

N. Kamiuchi, T. Matsui, R. Kikuchi, and K. Eguchi, Nanoscopic Observation of Strong Chemical Interaction between Pt and Tin Oxide, The Journal of Physical Chemistry C, vol.111, issue.44, pp.16470-16476, 2007.
DOI : 10.1021/jp0745337

M. Spencer, Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts, Journal of Catalysis, vol.93, issue.2, pp.216-223, 1985.
DOI : 10.1016/0021-9517(85)90169-1

T. Daio, A. Staykov, L. Guo, J. Liu, M. Tanaka et al., Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO2 Supports Carbon Aerogels as Catalyst Supports and First Insights on Their Durability in Proton Exchange Membrane Fuel Cells, Fuel Cells, vol.11, issue.6, pp.726-734, 2011.

M. Ouattara-brigaudet, S. Berthon-fabry, C. Beauger, M. Chatenet, N. Job et al., Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behavior in a proton exchange membrane fuel cell cathode, International Journal of Hydrogen Energy, vol.37, issue.12, pp.9742-9757, 2012.
DOI : 10.1016/j.ijhydene.2012.03.085

URL : https://hal.archives-ouvertes.fr/hal-00699512

E. Fabbri, A. Rabis, R. Kotz, T. Schmidt, D. Kramer et al., Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues, Physical Chemistry Chemical Physics, vol.115, issue.324, pp.13672-1368111292, 2014.
DOI : 10.1002/cctc.201300987

V. Muller, M. Rasp, G. Stefanic, J. Ba, S. Gunther et al., Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via, Nonaqueous Sol-Gel Procedure. Chem of Mater, vol.21, issue.21, pp.5229-5236, 2009.

I. Mulla, H. Soni, V. Rao, and A. Sinha, Deposition of improved optically selective conductive tin oxide films by spray pyrolysis, Journal of Materials Science, vol.122, issue.4, pp.1280-1288, 1986.
DOI : 10.1007/BF00553263

J. Bruneaux, H. Cachet, M. Froment, and A. Messad, Structural, electrical and interfacial properties of sprayed SnO2 films, Electrochimica Acta, vol.39, issue.8-9, pp.8-91251, 1994.
DOI : 10.1016/0013-4686(94)E0044-Z

K. Lee, I. Park, Y. Cho, D. Jung, N. Jung et al., Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells, Journal of Catalysis, vol.258, issue.1, pp.143-152, 2008.
DOI : 10.1016/j.jcat.2008.06.007

M. Gurrola, J. Gutierrez, S. Rivas, M. Guerra-balcazar, J. Ledesma-garcia et al., Evaluation of the corrosion of Sb-doped SnO2 supports for electrolysis systems, International Journal of Hydrogen Energy, vol.39, issue.29, pp.16763-16770, 2014.
DOI : 10.1016/j.ijhydene.2014.02.156

K. Godinho, A. Walsh, G. Watson, J. Chatelon, R. Berjoan et al., Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2 Sb-Doped SnO2 Transparent Conducting Oxide from the Sol-Gel Dip-Coating Technique, J Phys Chem C Thin Solid Films, vol.113, issue.2631, pp.439-44837, 1995.

C. Terrier, J. Chatelon, and J. Roger, Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method, Thin Solid Films, vol.295, issue.1-2, pp.95-100, 1997.
DOI : 10.1016/S0040-6090(96)09324-8

S. Lekshmy, G. Daniel, and K. Joy, Microstructure and physical properties of sol gel derived SnO2:Sb thin films for optoelectronic applications, Applied Surface Science, vol.274, pp.95-100, 2013.
DOI : 10.1016/j.apsusc.2013.02.109

W. Las, N. Dolet, P. Dordor, and J. Bonnet, ???based ceramics, Journal of Applied Physics, vol.74, issue.10, pp.6191-6196, 1993.
DOI : 10.1063/1.355188

M. Caldararu, M. Thomas, J. Bland, and D. Spranceana, Redox processes in Sb-containing mixed oxides used in oxidation catalysis, Applied Catalysis A: General, vol.209, issue.1-2, pp.383-390, 2001.
DOI : 10.1016/S0926-860X(00)00776-6

N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, Journal of Electroceramics, vol.7, issue.3, pp.143-167, 2001.
DOI : 10.1023/A:1014405811371

Y. Senoo, K. Kakinuma, M. Uchida, H. Uchida, S. Deki et al., supports for fuel cell cathodes due to aggregation and Pt loading, RSC Advances, vol.12, issue.61, pp.32180-32188, 2014.
DOI : 10.1016/j.ijhydene.2014.02.156