G. Rozza, D. B. Huynh, and A. T. Patera, Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations, Archives of Computational Methods in Engineering, vol.40, issue.11, pp.229-275, 2008.
DOI : 10.1016/j.crma.2003.09.023

R. Milani, A. Quarteroni, and G. Rozza, Reduced basis method for linear elasticity problems with many parameters, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.51-52, pp.51-52, 2008.
DOI : 10.1016/j.cma.2008.07.002

URL : https://infoscience.epfl.ch/record/125706/files/MQR.pdf

S. Boyaval, C. Le-bris, Y. Maday, N. C. Nguyen, and A. T. Patera, A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.41-44, pp.41-44, 2009.
DOI : 10.1016/j.cma.2009.05.019

URL : https://hal.archives-ouvertes.fr/inria-00311463

A. Ammar, B. Mokdada, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.139, issue.3, pp.153-176, 2006.
DOI : 10.1016/j.jnnfm.2006.07.007

URL : https://hal.archives-ouvertes.fr/hal-01004909

J. Artwell and B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations, Mathematical and Computer Modelling, vol.33, issue.1-3, pp.1-3, 2001.
DOI : 10.1016/S0895-7177(00)00225-9

L. Machiels, Y. Maday, and A. Patera, Output bounds for reduced-order approximations of elliptic partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.26-27, pp.3413-3426, 2001.
DOI : 10.1016/S0045-7825(00)00275-9

M. A. Grepl and A. T. Patera, error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.8, issue.1, pp.157-181, 2005.
DOI : 10.1051/cocv:2002041

D. Rovas, L. Machiels, and Y. Maday, Reduced-basis output bound methods for parabolic problems, IMA Journal of Numerical Analysis, vol.26, issue.3, pp.423-445, 2006.
DOI : 10.1093/imanum/dri044

URL : https://hal.archives-ouvertes.fr/hal-00112600

P. Kerfriden, J. J. Rodenas, and S. P. Bordas, Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error, International Journal for Numerical Methods in Engineering, vol.17, issue.4, pp.395-422, 2014.
DOI : 10.1007/s00466-013-0942-8

URL : https://hal.archives-ouvertes.fr/hal-00780840

E. Florentin and P. Dìez, Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems, Computer Methods in Applied Mechanics and Engineering, vol.225, issue.228, pp.225-228, 2012.
DOI : 10.1016/j.cma.2012.03.016

P. Ladevèze and D. Leguillon, Error Estimate Procedure in the Finite Element Method and Applications, SIAM Journal on Numerical Analysis, vol.20, issue.3, pp.485-509, 1983.
DOI : 10.1137/0720033

P. Ladevèze and L. Chamoin, On the verification of model reduction methods based on the proper generalized decomposition, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.23-24, pp.2032-2047, 2011.
DOI : 10.1016/j.cma.2011.02.019

J. P. De-almeida, A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics, International Journal for Numerical Methods in Engineering, vol.137, issue.2, pp.961-984, 2013.
DOI : 10.1016/S0045-7825(96)01067-5

L. Gallimard, P. Ladevèze, and J. Pelle, ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY, International Journal for Numerical Methods in Engineering, vol.94, issue.2, pp.189-217, 1996.
DOI : 10.1016/0045-7825(92)90057-Q

URL : https://hal.archives-ouvertes.fr/hal-01689591

P. Ladevèze and N. Moës, A new a posteriori error estimation for nonlinear time-dependent finite element analysis, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.45-68, 1997.
DOI : 10.1016/S0045-7825(97)00212-0

J. Pelle and D. Ryckelynck, An efficient adaptive strategy to master the global quality of viscoplastic analysis, Computers & Structures, vol.78, issue.1-3, pp.169-183
DOI : 10.1016/S0045-7949(00)00107-3

L. Gallimard and T. Sassi, A posteriori error analysis of a domain decomposition algorithm for unilateral contact problem, Computers & Structures, vol.88, issue.13-14, pp.13-14, 2010.
DOI : 10.1016/j.compstruc.2010.04.007

URL : https://hal.archives-ouvertes.fr/hal-01689843

V. Rey, C. Rey, and P. Gosselet, A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods, Computer Methods in Applied Mechanics and Engineering, vol.270, issue.0, pp.293-303, 2014.
DOI : 10.1016/j.cma.2013.12.001

URL : https://hal.archives-ouvertes.fr/hal-00919435

P. Ladevèze, J. Pelle, and P. Rougeot, ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS, Engineering Computations, vol.8, issue.1, pp.69-80, 1991.
DOI : 10.1002/nme.1620240206

L. Gallimard, A constitutive relation error estimator based on traction-free recovery of the equilibrated stress, International Journal for Numerical Methods in Engineering, vol.23, issue.7-8, pp.460-482, 2009.
DOI : 10.1002/9781118032824

URL : https://hal.archives-ouvertes.fr/hal-01689801

P. Ladevèze, L. Chamoin, and E. Florentin, A new non-intrusive technique for the construction of admissible stress fields in model verification, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.9-12, pp.9-12
DOI : 10.1016/j.cma.2009.11.007

L. Gallimard, P. Ladevèze, and J. Pelle, Error estimation and time-space parameters optimization for FEM non-linear computation, Computers & Structures, vol.64, issue.1-4, pp.145-156, 1997.
DOI : 10.1016/S0045-7949(96)00164-2

P. Ladevèze and N. Moës, Adaptive control for finite element analysis in plasticity, Computers & Structures, vol.73, issue.1-5, pp.45-60, 1999.
DOI : 10.1016/S0045-7949(98)00284-3

J. Peraire and A. Patera, Bounds for Linear???Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement, Advances in Adaptive Computational Methods, pp.199-216, 1998.
DOI : 10.1016/S0922-5382(98)80011-1