Skip to Main content Skip to Navigation
Journal articles

Advancing layer algorithm of dense ellipse packing for generating statistically equivalent polygonal structures

Abstract : A new constructive algorithm, called Advancing layer algorithm, for the generation of dense ellipse packing is proposed. Compared to existing algorithms for filling a 2D domain by elliptical particles, the method allows to respect the imposed size, shape and spatial orientation distributions (i.e. the inertia tensor) and achieve high packing densities. In particular case of disk packing, the comparison with Optimized Dropping and Rolling method shows that the computational cost of the proposed methodology is lower for moderate polydispersities of particle size while achieving higher packing densities and more homogeneous placing of particles in the domain. Thanks to an approximation of each ellipse by a set of circles, polygonal structures are constructed on the base of obtained ellipse packing by Laguerre–Voronoï Tessellation method in good agreement with desired characteristics of cells (polygons).
Document type :
Journal articles
Complete list of metadata

https://hal-mines-paristech.archives-ouvertes.fr/hal-01313562
Contributor : Magalie Prudon <>
Submitted on : Tuesday, May 10, 2016 - 10:11:33 AM
Last modification on : Thursday, September 24, 2020 - 5:22:55 PM

Identifiers

Citation

Dmitrii N. Ilin, Marc Bernacki. Advancing layer algorithm of dense ellipse packing for generating statistically equivalent polygonal structures. Granular Matter, Springer Verlag, 2016, 18 (43), pp.First online. ⟨10.1007/s10035-016-0646-9⟩. ⟨hal-01313562⟩

Share

Metrics

Record views

287