3D level set modeling of static recrystallization considering stored energy fields - Mines Paris Accéder directement au contenu
Article Dans Une Revue Computational Materials Science Année : 2016

3D level set modeling of static recrystallization considering stored energy fields

Résumé

In the last decades, many numerical models have been proposed to simulate thermomechanical treatments and their related effects on the microstructure. The present study deals with a relatively recent full field model using the level set method within a finite element framework. The ability of this approach to consider static recrystallization in two and three dimensions with nucleation has been demonstrated in previous studies (Bernacki et al., 2008, 2009). Although accurate, this model lies on a numerical formalism which is rather inefficient from a numerical point of view and do not permit to consider complex 3D aggregates in reasonable computation times. The present paper introduces a new efficient implementation of the static recrystallization (SRX) model which aims to overcome this limitation by taking full advantage of recent numerical developments (Shakoor et al., 2015; Scholtes et al., 2015). Its efficiency is evaluated through large scale 3D simulations of SRX with several thousand of grains. Acceleration factors of up to 40 are obtained, compared with the existing implementation. The predictions in terms of evolution of the recrystallized fraction are also confronted with classical analytic models and experimental results from literature, showing good agreement.

Domaines

Matériaux
Fichier non déposé

Dates et versions

hal-01327901 , version 1 (07-06-2016)

Identifiants

Citer

Benjamin Scholtes, Romain Boulais-Sinou, Amico Settefrati, Daniel Pino Muñoz, Isabelle Poitrault, et al.. 3D level set modeling of static recrystallization considering stored energy fields. Computational Materials Science, 2016, 122, pp.57-71. ⟨10.1016/j.commatsci.2016.04.045⟩. ⟨hal-01327901⟩
160 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More