G. Abbruzzese, I. Heckelmann, and K. Lücke, Statistical theory of two-dimensional grain growth???I. The topological foundation, Acta Metallurgica et Materialia, vol.40, issue.3, pp.519-532, 1992.
DOI : 10.1016/0956-7151(92)90401-Y

A. Agnoli, N. Bozzolo, . Loge´reloge´re, J. Franchet, J. Laigo et al., Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy ??? Application to a nickel-base superalloy, Computational Materials Science, vol.89, pp.233-241, 2014.
DOI : 10.1016/j.commatsci.2014.03.054

URL : https://hal.archives-ouvertes.fr/hal-00983317

S. Aldina, A. F. , and M. F. , Computer simulation of grain growth in a bidimensional polycristal 19, pp.1491-1496, 1985.

O. Beltran, K. Huang, and L. , A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress, Computational Materials Science, vol.102, pp.293-303, 2015.
DOI : 10.1016/j.commatsci.2015.02.043

URL : https://hal.archives-ouvertes.fr/hal-01137230

M. Bernacki, Y. Chastel, T. Coupez, and L. , Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
DOI : 10.1016/j.scriptamat.2008.02.016

URL : https://hal.archives-ouvertes.fr/hal-00509731

M. Bernacki, H. Resk, T. Coupez, and L. , Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Modelling and Simulation in, Materials Science and Engineering, vol.17, issue.6, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00508362

M. Bernacki, . Loge´rloge´r, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
DOI : 10.1016/j.scriptamat.2010.11.032

URL : https://hal.archives-ouvertes.fr/hal-00577039

P. Bernard, S. Bag, K. Huang, and L. , A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineering: A, vol.528, issue.24, pp.7357-7367, 2011.
DOI : 10.1016/j.msea.2011.06.023

URL : https://hal.archives-ouvertes.fr/hal-00612438

V. Bulatov, B. Reed, and M. Kumar, Grain boundary energy function for fcc metals, Acta Materialia, vol.65, pp.161-175, 2013.
DOI : 10.1016/j.actamat.2013.10.057

J. Burke and D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, vol.3, p.220, 1952.
DOI : 10.1016/0502-8205(52)90009-9

J. Burke and D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, vol.3, issue.52, pp.220-292, 1952.
DOI : 10.1016/0502-8205(52)90009-9

W. Chao and L. Guoquan, Reanalysis of the 3D quasi-stationary grain size distribution based on Hillert grain growth rate equation, Ser E Technological Sciences, vol.47, issue.1, pp.112-120, 2004.

F. Chen, Z. Cui, and J. Chen, Prediction of microstructural evolution during hot forging Manufacturing Review 1:6, DOI 10, 1051.
DOI : 10.1051/mfreview/2014006

URL : https://doi.org/10.1051/mfreview/2014006

D. Cram, H. Zurob, Y. Brechet, and C. Hutchinson, Modelling discontinuous dynamic recrystallization using a physically based model for nucleation, Acta Materialia, vol.57, issue.17, pp.5218-5228, 2009.
DOI : 10.1016/j.actamat.2009.07.024

URL : https://hal.archives-ouvertes.fr/hal-00805034

A. Cruz-fabiano, . Loge´rloge´r, and M. Bernacki, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Computational Materials Science, vol.92, pp.305-312, 2014.
DOI : 10.1016/j.commatsci.2014.05.060

URL : https://hal.archives-ouvertes.fr/hal-01023803

D. Kamachali, R. Steinbach, and I. , 2012) 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations, Acta Materialia, vol.6067, pp.2719-2728

D. Kamachali, R. Abbondandolo, A. Siburg, K. Steinbach, and I. , Geometrical grounds of mean field solutions for normal grain growth, Acta Materialia, vol.90, pp.252-258, 2015.
DOI : 10.1016/j.actamat.2015.02.025

A. Dehghan-manshadi, M. Barnett, and P. Hodgson, Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Materials Science and Engineering: A, vol.485, issue.1-2, pp.664-672, 2008.
DOI : 10.1016/j.msea.2007.08.026

R. Ding and Z. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization, Acta Materialia, vol.49, issue.16, pp.3163-3175, 2001.
DOI : 10.1016/S1359-6454(01)00233-6

E. Wahabi, M. Cabrera, J. Prado, and J. , Hot working of two AISI 304 steels: a comparative study, Materials Science and Engineering: A, vol.343, issue.1-2, pp.116-125, 2003.
DOI : 10.1016/S0921-5093(02)00357-X

M. Elsey, S. Lu, and P. Smereka, Large-scale simulations and parameter study for a simple recrystallization model, Philosophical Magazine, vol.3, issue.11, pp.1607-1642, 2011.
DOI : 10.1016/0001-6160(89)90333-7

URL : http://www.math.lsa.umich.edu/%7Epsmereka/PAPERS/recry.pdf

M. Elsey, S. Esedoglu, and P. Smereka, Large-scale simulation of normal grain growth via diffusion-generated motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.127, issue.3838, pp.381-401, 2011.
DOI : 10.1126/science.161.3838.276

URL : http://rspa.royalsocietypublishing.org/content/royprsa/467/2126/381.full.pdf

E. Spii, /. Fan, X. Yang, H. Sun, Z. Zhang et al., InTech- Monte{_}carlo{_}simulations{_}of{_}grain{_}growth{_}in{_}metals.pdf Esedolu S (2016) Grain size distribution under simultaneous grain boundary migration and grain rotation in two dimensions Quantitative analysis of dynamic recrystallization behavior using a grain boundary evolution based kinetic model, Computational Materials Science Materials Science & Engineering A, vol.121, issue.527, pp.581-610, 2010.

F. Vaz, M. Fortes, and M. , Grain size distribution : The lognormal and the gamma distribution functions, Pergamon journals, vol.22, pp.35-40, 1988.

J. Favre, D. Fabrègue, A. Chiba, and Y. Bréchet, Nucleation of recrystallization in fine-grained materials: an extension of the Bailey???Hirsch criterion, Philosophical Magazine Letters, vol.45, issue.11, pp.631-639, 2013.
DOI : 10.1098/rspa.1934.0106

URL : https://hal.archives-ouvertes.fr/hal-00935027

H. Hallberg, Approaches to Modeling of Recrystallization, Metals, vol.155, issue.115, pp.16-482075, 2011.
DOI : 10.1006/jcph.1999.6345

URL : http://www.mdpi.com/2075-4701/1/1/16/pdf

H. Hallberg, A modified level set approach to 2D modeling of dynamic recrystallization, Modelling and Simulation in Materials Science and Engineering, vol.21, issue.8, p.85, 2013.
DOI : 10.1088/0965-0393/21/8/085012

URL : http://lup.lub.lu.se/search/ws/files/2269577/4631447.pdf

H. Hallberg, M. Wallin, and M. Ristinmaa, Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton, Computational Materials Science, vol.49, issue.1, pp.25-34, 2010.
DOI : 10.1016/j.commatsci.2010.04.012

URL : http://lup.lub.lu.se/search/ws/files/3188157/4187050.pdf

M. Hillert, On the theory of normal and abnormal grain growth, Acta Metallurgica, vol.13, issue.3, 1965.
DOI : 10.1016/0001-6160(65)90200-2

K. Hitti and M. Bernacki, Optimized Dropping and Rolling (ODR) method for packing of poly-disperse spheres, Applied Mathematical Modelling, vol.37, issue.8, pp.5715-5722, 2013.
DOI : 10.1016/j.apm.2012.11.018

URL : https://hal.archives-ouvertes.fr/hal-00780744

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.224-238, 2012.
DOI : 10.1016/j.commatsci.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-00699554

E. Holm, G. Hassold, and M. Miodownik, On misorientation distribution evolution during anisotropic grain growth, Acta Materialia, vol.49, issue.15, pp.2981-2991, 2001.
DOI : 10.1016/S1359-6454(01)00207-5

M. Jafari and A. Najafizadeh, Correlation between Zener???Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel, Materials Science and Engineering: A, vol.501, issue.1-2, pp.16-25, 2009.
DOI : 10.1016/j.msea.2008.09.073

J. Jonas, X. Quelennec, and L. Jiang, The Avrami kinetics of dynamic recrystallization, Acta Materialia, vol.57, issue.9, pp.2748-2756, 2009.
DOI : 10.1016/j.actamat.2009.02.033

S. Khoddam, P. Hodgson, and H. Beladi, Computational inverse analysis of static recrystallization kinetics, International Journal of Mechanical Sciences, vol.103, pp.97-103, 2015.
DOI : 10.1016/j.ijmecsci.2015.09.008

B. Kim, K. Hiraga, and K. Morita, Kinetics of Normal Grain Growth Depending on the Size Distribution of Small Grains, Journal of the Japan Institute of Metals, vol.68, issue.10, pp.913-918, 2004.
DOI : 10.2320/jinstmet.68.913

K. Si and Y. Yc, Dynamic recrystallization behavior of AISI 304 stainless steel, Materials Science and Engineering, vol.311, pp.108-113, 2001.

C. Krill and L. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Materialia, vol.50, issue.12, pp.3059-3075, 2002.
DOI : 10.1016/S1359-6454(02)00084-8

E. Lazar, J. Mason, R. Macpherson, and D. Srolovitz, A more accurate three-dimensional grain growth algorithm, Acta Materialia, vol.59, issue.17, pp.6837-6847, 2011.
DOI : 10.1016/j.actamat.2011.07.052

X. Li, L. Duan, J. Li, and X. Wu, Experimental study and numerical simulation of dynamic recrystallization behavior of a micro-alloyed plastic mold steel, Materials & Design (1980-2015), vol.66, pp.309-320, 2015.
DOI : 10.1016/j.matdes.2014.10.076

Y. Lin and X. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Materials & Design, vol.32, issue.4, pp.1733-1759, 2011.
DOI : 10.1016/j.matdes.2010.11.048

K. Lücke, I. Heckelmann, and G. Abbruzzese, Statistical theory of two-dimensional grain growth???II. Kinetics of grain growth, Acta Metallurgica et Materialia, vol.40, issue.3, pp.533-542, 1992.
DOI : 10.1016/0956-7151(92)90402-Z

T. Luther and C. Könke, Polycrystal models for the analysis of intergranular crack growth in metallic materials, Engineering Fracture Mechanics, vol.76, issue.15, pp.2332-2343, 2009.
DOI : 10.1016/j.engfracmech.2009.07.006

R. Macpherson and D. Srolovitz, The von Neumann relation generalized to coarsening of three-dimensional microstructures, Nature, vol.40, issue.7139, pp.1053-1055, 2007.
DOI : 10.1038/nature05745

L. Madej, M. Sitko, and M. Pietrzyk, Perceptive comparison of mean and full field dynamic recrystallization models, Archives of Civil and Mechanical Engineering, vol.16, issue.4, pp.569-589, 2016.
DOI : 10.1016/j.acme.2016.03.010

M. Ma, A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys, Journal of Light Metals, vol.2, issue.302, pp.125-135, 2002.

H. Mirzadeh, Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions, Mechanics of Materials, vol.85, pp.66-79, 2015.
DOI : 10.1016/j.mechmat.2015.02.014

A. Momeni, K. Dehghani, and G. Ebrahimi, Modeling the initiation of dynamic recrystallization using a dynamic recovery model, Journal of Alloys and Compounds, vol.509, issue.39, pp.9387-9393, 2011.
DOI : 10.1016/j.jallcom.2011.07.014

F. Montheillet, O. Lurdos, and G. Damamme, A grain scale approach for modeling steady-state discontinuous dynamic recrystallization, Acta Materialia, vol.57, issue.5, pp.1602-1612, 2009.
DOI : 10.1016/j.actamat.2008.11.044

URL : https://hal.archives-ouvertes.fr/emse-00463547

D. Olmsted, E. Holm, and S. Foiles, Survey of computed grain boundary properties in face-centered cubic metalsII: Grain boundary mobility The cleavage strength of polycrystals, Acta MaterialiaS1359645409002316 Petch N J Iron Steel Inst, vol.57, issue.174, pp.3704-371325, 1953.

. Piekos´kpiekos´k, J. Tarasiuk, K. Wierzbanowski, and B. Bacroix, Generalized vertex model of recrystallization - Application to polycrystalline copper, Computational Materials Science, vol.42, issue.4, pp.584-594, 2008.

D. Raabe, Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena, Philosophical Magazine A, vol.191, issue.10, pp.2339-2358, 1999.
DOI : 10.1016/0956-716X(93)90597-L

B. Raeisinia and C. Sinclair, A representative grain size for the mechanical response of polycrystals, Materials Science and Engineering: A, vol.525, issue.1-2, pp.78-82, 2009.
DOI : 10.1016/j.msea.2009.06.045

P. Rios, T. Dalpian, V. Brandao, J. Castro, and A. Oliveira, Comparison of analytical grain size distributions with three-dimensional computer simulations and experimental data, Scripta Materialia, vol.54, issue.9, pp.1633-1637, 2006.
DOI : 10.1016/j.scriptamat.2006.01.007

A. Rollett, A. Rollett, D. Srolovitz, and M. Anderson, Overview of modeling and simulation of recrystallization00008-X Rollett AD, Raabe D (2001) A hybrid model for mesoscopic simulation of recrystallization Simulation and theory of abnormal grain growthanisotropic grain boundary energies and mobilities, Progress in Materials Science Computational Materials Science Acta Metallurgica, vol.429789, issue.374, pp.79-99, 1989.

C. Roucoules, M. Pietrzyk, and P. Hodgson, Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model, Materials Science and Engineering: A, vol.339, issue.1-2, pp.1-9, 2003.
DOI : 10.1016/S0921-5093(02)00120-X

T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, vol.60, pp.130-207, 2014.
DOI : 10.1016/j.pmatsci.2013.09.002

URL : https://doi.org/10.1016/j.pmatsci.2013.09.002

B. Scholtes, M. Shakoor, A. Settefrati, P. Bouchard, N. Bozzolo et al., New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, vol.109, pp.388-398, 2015.
DOI : 10.1016/j.commatsci.2015.07.042

URL : https://hal.archives-ouvertes.fr/hal-01479197

B. Scholtes, R. Boulais-sinou, A. Settefrati, P. Muñoz, D. Poitrault et al., 3D level set modeling of static recrystallization considering stored energy fields, Computational Materials Science, vol.122, 2016.
DOI : 10.1016/j.commatsci.2016.04.045

URL : https://hal.archives-ouvertes.fr/hal-01327901

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method ??? Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23-24, 2015.
DOI : 10.1016/j.apm.2015.03.014

URL : https://hal.archives-ouvertes.fr/hal-01139858

Y. Suwa, Y. Saito, H. Onodera, K. Tan, J. Li et al., Parallel Computer Simulation of Three-Dimensional Grain Growth Using the Multi-Phase-Field Model, MATERIALS TRANSACTIONS, vol.49, issue.4, pp.704-709204, 2008.
DOI : 10.2320/matertrans.MRA2007225

URL : https://www.jstage.jst.go.jp/article/matertrans/49/4/49_MRA2007225/_pdf

H. Zhao, T. Chan, B. Merriman, and S. Osher, A Variational Level Set Approach to Multiphase Motion, Journal of Computational Physics, vol.127, issue.1, pp.179-195, 1996.
DOI : 10.1006/jcph.1996.0167

URL : http://www.math.lsa.umich.edu/%7Epsmereka/LEVELSET/LSPAPERS/zzosherzhao.pdf

P. Zhao, S. E. Low, T. Wang, Y. Niezgoda, and S. , An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper, International Journal of Plasticity, vol.80, pp.38-55, 2016.
DOI : 10.1016/j.ijplas.2015.12.010

R. Zhu, Q. Liu, J. Li, S. Xiang, Y. Chen et al., Dynamic restoration mechanism and physically based constitutive model of 2050 Al???Li alloy during hot compression, Journal of Alloys and Compounds, vol.650, pp.75-85, 2015.
DOI : 10.1016/j.jallcom.2015.07.182

M. Zouari, N. Bozzolo, and R. Loge, Mean field modelling of dynamic and post-dynamic recrystallization during hot deformation of Inconel 718 in the absence of ?? phase particles, Materials Science and Engineering: A, vol.655, pp.1-17, 2016.
DOI : 10.1016/j.msea.2015.12.102

URL : https://hal.archives-ouvertes.fr/hal-01297977

H. Zurob, Y. Brechet, and J. Dunlop, Quantitative criterion for recrystallization nucleation in single-phase alloys: Prediction of critical strains and incubation times, Acta Materialia, vol.54, issue.15, pp.3983-3990, 2006.
DOI : 10.1016/j.actamat.2006.04.028

URL : https://hal.archives-ouvertes.fr/hal-00140265