Adaptive variational multiscale method for bingham flows

Abstract : The simulation of viscoplasitc flows is still attracting considerable attention in many industrial applications. However, the underlying numerical discretization and regularization may suffer from numerical oscillations, in particular for high Bingham and Reynolds numbers flows. In this work, we investigate the Variational Multiscale stabilized finite element method in solving such flows. We combined it with a posteriori error estimator for anisotropic mesh adaptation, enhancing the use of the Papanastasiou regularization. Computational results are compared to existing data from the literature and new results have demonstrated that the approach can be applied for Bingham numbers higher than 1000 yielding accurate predictions.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01369945
Contributeur : Magalie Prudon <>
Soumis le : mercredi 21 septembre 2016 - 16:52:12
Dernière modification le : lundi 12 novembre 2018 - 10:54:43

Identifiants

Citation

Stéphanie Riber, Rudy Valette, Youssef Mesri, Elie Hachem. Adaptive variational multiscale method for bingham flows. Computers and Fluids, Elsevier, 2016, 138, pp.51-60. ⟨10.1016/j.compfluid.2016.08.011⟩. ⟨hal-01369945⟩

Partager

Métriques

Consultations de la notice

304