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Abstract

We consider a quantum system composed of a fast quan-
tum subsystem coupled to a slow one. We provide ex-
pressions of the approximate reduced model describing
the slow subsystem perturbed by the fast one (adiabatic
elimination), based on an asymptotic expansion that we
solve up to second order. The specificity of our expres-
sions is to preserve the quantum structure in the reduced
model: we provide the reduced dynamics in Lindblad
form, and the mapping defining the slow manifold as a
completely positive map in Kraus form.

1 Introduction

Very often in quantum physics we are dealing with com-
plex connected systems where we want to characterize
the evolution of one subsystem, e.g. an engineered in-
formation encoding device, coupled to various external
influences and to quantum communication buses. When
the time scales in the subsystem of interest are much
slower than in the other subsystems, one can derive a
reduced model with rigorous approximation guarantees,
by eliminating the fast variables with so-called adiabatic
elimination techniques. We would essentially treat the
slow dynamics of interest as a small perturbation to the
fast dynamics, and solve for the effect of this perturba-
tion. One of the key issues of adiabatic elimination is to
ensure a physical meaning for the reduced model. For
closed quantum systems, described by the Schrödinger
master equation, the quantum evolution is unitary and
regular perturbation theory is routinely applied ([15]).
The case of open quantum systems, described by a Lind-
blad master equation ([5]), is much more complicated
and involves singular perturbation theory.

A lot of particular examples of open quantum systems
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have been successfully treated in the literature. [6], [14],
[13] study models with excited states decaying fast to-
wards several ground states. For systems with Gaussian
dynamics an adiabatic elimination technique is presented
in [10]. [1] investigate a specific atom-optics system.
Some more generic methods have also been proposed. A
generalization of the Schrieffer-Wolff formalism for Lind-
blad dynamics is developed in [11]. [4] derive a reduced
dynamics as the speed of the fast subsystem tends to in-
finity, without giving the order of approximation nor the
perturbation of the slow manifold. However, as pointed
out by recent quantum experiments aiming at strong in-
direct stabilization of quantum systems ([12]), a better
knowledge of the order of validity of such approximations
is becoming necessary.

In the present paper, we use a geometric approach to
perform adiabatic elimination for composite open quan-
tum systems. Our main contribution is to combine two
key features. First, we provide an asymptotic expansion
that allows to choose the order of approximation, both
for the dynamics and for the characterization of the slow
manifold, as a function of the time-scale separation be-
tween the fast dynamics and its perturbation. Second,
we preserve the structural properties of open quantum
systems, and hence allow a physical interpretation of the
reduced model:

• The reduced dynamics follows a Lindblad master
equation.

• The parameterization of the slow manifold is ex-
plicitly given as a trace preserving completely pos-
itive map, also called Kraus map, see [8].

To our knowledge, ensuring a Kraus map for the slow
manifold is novel in adiabatic elimination.

Our approach is based on center manifold techniques
([7]) and geometric singular perturbation theory ([9]),
to derive a recurrence relation between the corrections
at various orders. We made a first contribution along
those lines in [2], deriving formulas only for the first order
approximation, for a general quantum system with fast
convergence of part of the variables. Here we provide the
second-order expressions as well, which leads to a conjec-
ture about extending the structured computation to any
orders, when the perturbing dynamics is Hamiltonian.
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We also consider a more specific quantum model, where
the slow and fast variables correspond to two different in-
teracting quantum subsystems. The slow and fast man-
ifolds are hence factored in tensor product form, rather
than the cartesian product which is standard in classical
dynamical systems. We can then interpret the dynam-
ics of the reduced quantum subsystem. As expected, the
first order approximation corresponds to the well-known
Zeno Hamiltonian. It also shows that entanglement al-
ready appears at this order; to our knowledge, this is the
first time that such systematic first order entanglement
is shown in adiabatic elimination. The second order ap-
proximation emphasizes how a Hamiltonian coupling to
an open system introduces decoherence in the slow dy-
namics. It also shows that the second order decoherence
operators are linear combinations of the operators in the
interaction Hamiltonian, and that there are precisely as
many decoherence channels as Hermitian operators in the
interaction Hamiltonian.

The paper is organized as follows. Section 2 presents
the model of composite open quantum system, our as-
sumptions on the dynamics, and some key properties of
our particular model. Section 3 introduces the asymp-
totic expansion for adiabatic elimination. Section 4 con-
tains our main results, i.e. the structured expressions for
the first and second order terms of the asymptotic ex-
pansion. Section 5 is devoted to an illustrative example
of two qubits, a fast one relaxing to a driven mixed state
and a slow qubit dispersively coupled to the fast one.

2 Bipartite systems

Let HF and HS be two Hilbert spaces of finite dimension
associated with two quantum subsystems. The Hilbert
space associated with their composite system is the ten-
sor product space HF ⊗ HS , whose dimension is the
product of the individual dimensions. Denoting with
{|fj〉}j, {|sj〉}j some orthonormal bases for HF and HS

respectively, an orthonormal basis for HF ⊗HS is given
by {|fj〉 ⊗ |sk〉}j,k.

The state of an open quantum system on H is de-
scribed by a density operator ρ, which is a linear Her-
mitian nonnegative operator from H to H (≃ a matrix
acting on the complex vector space) whose trace equals 1.
For all other operators on Hilbert spaces we use bold let-
ters. We will denote D (resp. DF ,DS) the “state space”,
i.e. the compact convex set of all density operators on
H = HF ⊗ HS (resp. HF , HS). A given state ρ of the
composite system on H cannot always be described in
terms of one state on HF and one on HS – the dimen-
sions of the Hilbert spaces readily shows that the com-
posite state can contain more information. To extract
from some ρ ∈ H the maximum of information concern-
ing the state of the subsystem in HS , we take the partial
trace overHF , i.e. TrF (ρ0) =

∑

j〈fj |ρ|fj〉 . Here, with a
slight abuse of notation, we mean 〈fj |(|fk〉 ⊗ |sℓ〉) = |sℓ〉

if j = k, or = 0 if j 6= k; and computing its action on
any other vector of H by linearity.

The dynamics of an open quantum system can be
described by a Lindblad master equation (see, e.g., [5]):

dρ

dt
= L(ρ) = −i[H, ρ] +

∑

µ

LµρL
†
µ −

L†
µLµρ+ ρL†

µLµ

2
,

(1)
with any operators Lµ and any Hermitian operator H.
In all the following, the cursive L possibly with indexes
denotes a super-operator, i.e. a linear function mapping
operators-on-H to operators-on-H, of this particular Lind-
bladian form.

In this paper, we consider a composite quantum sys-
tem with two time scales:

dρ

dt
=LF (ρ)− iǫ[Hint, ρ] with (2)

LF (ρ) =− i[HF ⊗ 1S , ρ] +
∑

µ

(LFµ
⊗ 1S)ρ(L

†
Fµ

⊗ 1S)

−
((L†

Fµ
LFµ

)⊗ 1S)ρ+ ρ((L†
Fµ

LFµ
)⊗ 1S)

2
,

Hint =

nint
∑

j=1

Fj ⊗ Sj

and where ǫ is a small positive parameter. Here 1S de-
notes the identity operator on HS and LF thus acts non-
trivially only on HF . In other words, LF (X ⊗ Y) =
LF (X) ⊗ Y for any operators X on HF and Y on HS .
With a slight and common abuse of notation, we will
thus sometimes refer to LF (X) with an operator X on
HF only. The Fj are some Hermitian operators on HF

and Sj are some Hermitian operators on HS . In partic-
ular, Hint may include an operator 1⊗HS consisting of
all the Hamiltonian dynamics of the subsystem S.

For ǫ = 0, the subsystem on HF is completely decou-
pled from the subsystem on HS . The latter in fact does
not move. For the former, we assume that for ǫ = 0 it
asymptotically converges towards a unique equilibrium
state denoted by ρF =

∑nF

m=1 rm |χm〉〈χm|, where the
second expression is a spectral decomposition with rm>0
for all m and nF is the rank of ρF . Note that asymptotic
convergence requires the presence of a dissipative (i.e.,
non Hamiltonian) term in the dynamics. Then on H, for
any initial state ρ(0) = ρ0 the solution of dρ

dt
= LF (ρ)

converges for t tending to +∞ towards

ρ∞ = e+∞LF (ρ0) = ρF ⊗ TrF (ρ0). (3)

where etLF (·) is the propagator. In the sequel, we will
exploit the following key properties.

(a) TrF (LF (A)) = 0 for any operator A on HF ⊗HS .

(b) Several times we will have to find an operator X on
HF as the solution of LF (X) = Y, with Tr(Y) = 0.
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The asymptotic stability implies that LF is sta-
ble (eigenvalues with strictly negative parts) when
considered as a linear map on the space L0(HF ) of
linear operators on HF with trace 0 (the fact that
ρ is Hermitian and X possibly not, is easily cov-
ered by noting that LF (iρ) = iLF (ρ)). The inverse
is thus well defined for Y,X ∈ L0, and a formal
expression is:

L
−1
F (Y) = −

∫ ∞

0

eτLF (Y) dτ , (4)

which indeed converges since t 7→ eτLF (Y) con-
verges exponentially towards 0.

(c) In the computation of item (b), if Y takes the form
ỸρF i.e. the states orthogonal to span{|χ1〉, ..., |χnF

〉}
are in the kernel of Y, then also X = L

−1
F (Y) takes

the form X̃ρF (see Lemma 3).

(d) Similarly, we will have to solve for operator X on
the composite Hilbert space H in equations of the
type LF (X) = Y, where now Y as well acts on H
instead of HF . Since LF acts nontrivially only on
HF , the same formula (4) applies, provided that
we assume that TrF (Y) = 0, and yields a unique
solution X such that TrF (X) = 0.

(e) Standard computations show that for any opera-
tors X and Y on HF we have the following identity

LF (XρF ) Y
† +X LF (ρFY

†) =

LF (XρFY
†)−

∑

µ

[LFµ
,X] ρF [LFµ

,Y]†. (5)

Our goal, in system theoretic terms, is to obtain the
expressions for the slow dynamics, i.e. the perturbation of
the center manifold D0 = ker(LF ) = {ρ = ρF ⊗ρS, ∀ρS ∈
DS}, for ǫ 6= 0 but small.

3 Asymptotic expansion

We now recall the asymptotic expansion method for ob-
taining such center manifold approximations, which leads
to the recurrence relations which we must solve. We ap-
ply an adaptation of [7, Th.1 chapt.2] to construct an in-
variant submanifold of equation (2) to which the system
converges quickly and on which it evolves slowly. This
manifold is the image of D0 under some map K. Using
[9], we can develop the map K and the slow dynamics
on K in power series of ǫ. In order to preserve physical
meaning, we will impose a specific quantum structure
onto these standard techniques.

We parameterize the slow manifold, i.e. the pertur-
bation of D0, by a density operator ρS of the same di-
mension of D0, and thus of the density operators on HS .
We will then interpret ρS as approximately the state of

the HS system, although this is not exact: for ǫ 6= 0 the
subsystems of HS and HF get “hybridized” in the slow
manifold, and we impose to describe this by a Kraus
map:

ρ(t) = K(ρS(t)) =
∑

k≥0

ǫkKk(ρF ⊗ ρS(t)) . (6)

When approximating the infinite series by a finite sum up
to k = k̄, we impose to get an explicit Kraus map ρS 7→
∑

j Kj(ρF ⊗ρS(t))K
†
j with TrF

(

∑

j K
†
jKj(ρF ⊗ 1S)

)

=

1S, up to terms of order ǫk̄+1.
Similarly, we impose that the evolution of ρS(t), pa-

rameterizing the dynamics on the slow manifold, follows
a Lindblad equation:

dρS
dt

=
∑

k≥0

ǫkLs,k(ρS) (7)

where, for any finite sum, we want to obtain on the right
an expression of the type (1).

Using [9] and [7], we derive the following formal in-
variance condition binding the unknown maps Ls,k and
Kk:

dρ

dt
=LF

(

∑

k≥0

ǫkKk(ρF ⊗ ρS)
)

− iǫ[Hint,
∑

k≥0

ǫkKk(ρF ⊗ ρS)]

=K

(

dρS
dt

)

=
∑

k≥0

ǫkKk





∑

j≥0

ǫjLs,j(ρS)





Identifying the terms of same order in ǫ yields recurrence
relations to derive the Kj and Ls,j .

To initialize this recurrence, it is natural to choose
the zero order mapping

K0(ρF ⊗ ρS) = ρF ⊗ ρS . (8)

The zero order recurrence relation then yields ρF⊗Ls,0(ρS) =
LF

(

K0(ρS)
)

= 0 so we get Ls,0(ρS) = 0 as expected. For
k ≥ 1, the term in ǫk gives the condition

LF

(

Kk(ρF ⊗ ρS)
)

− i[Hint,Kk−1(ρF ⊗ ρS)]

=

k
∑

m=1

Kk−m

(

ρF ⊗ Ls,m(ρS)
)

. (9)

The remaining difficulty is to solve (9) analytically, with
the constraints on the structure of Kj and Ls,j .

4 Main results

Our main result is an explicit solution for the first and
second order approximation from the recurrence (9). In
all the following, for an operator X on HF , we denote
X = X− Tr(XρF )1F .
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Theorem 1 The first order approximation for the slow
dynamics of (2) is given by the Hamiltonian evolution

d

dt
ρS = ǫLs,1(ρS) = −i [ǫHS1

, ρS ] (10)

with HS1
=
∑nint

j=1 Tr(FjρF )Sj. The parameterization of
the slow manifold is given by:

(K0 + ǫK1)(ρF ⊗ ρS) +O(ǫ2) =

(

1− iǫ

nint
∑

j=1

Qj ⊗ Sj

)(

ρF ⊗ ρS
)(

1 + iǫ

nint
∑

j=1

Q
†
j ⊗ Sj

)

(11)

with Qj satisfying, thanks to property (c) from Section
2,

QjρF = −L
−1
F

(

Fj ρF
)

with Tr(QjρF ) = 0.

Proof 1 Taking (9) for k = 1 and using (8), we must
solve

LF (K1(ρF⊗ρS))−i[Hint, ρF⊗ρS ] = ρF⊗Ls,1(ρS) . (12)

With a partial trace versus HF and using property (a)
from Section 2, we get

Ls,1(ρS) = −i

nint
∑

j=1

[Tr(FjρF )Sj , ρS ] .

Plugging this into (12), we compute K1 by solving the
equation LF (K1) = i

∑nint

j=1

(

FjρF ⊗ SjρS − ρFFj ⊗ ρSSj

)

.
Inverting LF with properties (d),(c) from Section 2 and
the associated operator spaces, we get

K1 = i

nint
∑

j=1

(

L−1
F (FjρF )⊗ SjρS − L−1

F (ρFFj)⊗ ρSSj

)

since Tr
(

FjρF
)

= 0 for each j. �

Theorem 1 shows that the slow evolution is coher-
ent up to second order terms and driven by the Zeno
Hamiltonian ǫHS1

. However, the underlying state ρ of
the bipartite system given by (11) admits in general en-
tanglement terms of order one versus ǫ.

Lemma 1 Consider the nint × nint matrix Z of entries

Zj,j′ = −Tr
(

FjL
−1
F (Fj′ρF )

)

.

Then X = Z + Z† is always nonnegative and thus is
factorized, X = N †N , where N is an nint × nint matrix
with complex entries.

Proof 2 From (5) with X = −Qj′ and Y = −Qj, we
have

−LF (Qj′ρF )Q
†
j−Qj′LF (ρFQ

†
j) = Fj′ρFQ

†
j+Qj′ρFFj

=
∑

µ

[LFµ
,Qj′ ] ρF [LFµ

,Qj]
† − LF (Qj′ρFQ

†
j).

Since Xj,j′ = Tr
(

Fj′ρFQ
†
j +Qj′ρFFj

)

= Tr
(

Fj′ρFQ
†
j +Qj′ρFFj

)

, we have

Xj,j′ =
∑

µ

Tr
(

[LFµ
,Qj′ ] ρF [LFµ

,Qj]
†
)

.

With the spectral decomposition of ρF =
∑

m rm |χm〉〈χm|
we have X⊤ =

∑

µ,m rmG(µ,m) where each matrix G(µ,m)

is the nint × nint Gram matrix associated with nint vectors
[LFµ

,Q1]|χm〉, . . . , [LFµ
,Qnint

]|χm〉. Such Hermitian
matrices are always nonnegative (see, e.g., [3, page 3])
and thus X is nonnegative because each rm is positive.
�

Theorem 2 The nint × nint matrices Y = (Z − Z†)/2i
and N provided by lemma 1 yield the following second
order approximation for the slow dynamics of (2):

d

dt
ρS = ǫLs,1(ρS)+ǫ2Ls,2(ρS) = −i

[

ǫHS1
+ǫ2HS2

, ρS
]

+ ǫ2
nint
∑

j=1

(

CjρSC
†
j − 1

2C
†
jCjρS − 1

2ρSC
†
jCj

)

(13)

where HS1
is given by (10),

Cj =

nint
∑

j′=1

Nj,j′ Sj′ and HS2
=

nint
∑

j,j′=1

Yj,j′ SjSj′ .

Proof 3 Taking (9) for k = 2, we must solve

LF (K2(ρF ⊗ ρS))− i[Hint,K1(ρF ⊗ ρS)]

= K1(ρF ⊗ Ls,1(ρS)) + ρF ⊗ Ls,2(ρS) .

The two unknowns K2 and Ls,2 appear in exactly the
same structure as for k = 1, only the independent term
changes. With Ls,1 and K1 provided by theorem 1, we get
after some standard computations:

LF (K2(ρF ⊗ ρS)) = ρF ⊗ Ls,2(ρS)

+

nint
∑

j,j′=1

(

FjQj′ρF ⊗ SjSj′ρS + ρFQ
†
j′Fj ⊗ ρSSj′Sj

)

−
nint
∑

j,j′=1

((

FjρFQ
†
j′ +QjρFFj′

)

⊗ SjρSSj′

)

. (14)

With a partial trace versus HF , using property (a) from
Section 2 and Tr(QjρF ) = 0, we get

Ls,2(ρS) =

nint
∑

j,j′=1

Tr
(

FjρFQ
†
j′ +QjρFFj′

)

SjρSSj′

−
nint
∑

j,j′=1

(

Tr (Qj′ρFFj)SjSj′ρS + Tr
(

FjρFQ
†
j′

)

ρSSj′Sj

)

.
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Since Zj,j′ = Tr (Qj′ρFFj) and Z = X/2+iY with X† =
X and Y † = Y , we have after some simple computations

Ls,2(ρS) =
nint
∑

j,j′=1

(

Xj,j′SjρSSj′ − Xj,j′

2 SjSj′ρS − Xj′ ,j

2 ρSSj′Sj

)

− i





nint
∑

j,j′=1

Yj,j′SjSj′



 ρS + iρS





nint
∑

j,j′=1

Yj′,jSj′Sj



 .

We get thus the Hermitian operator HS2
. Since Xj,j′ =

∑nint

j′”=1 N
∗
j,j”Nj”,j′ , we have by definition of Cj ,

nint
∑

j=1

(

CjρSC
†
j − 1

2C
†
jCjρS − 1

2ρSC
†
jCj

)

=

nint
∑

j,j′=1

(

Xj,j′SjρSSj′ − Xj,j′

2 SjSj′ρS − Xj′ ,j

2 ρSSj′Sj

)

.

We have proved (13). �

Theorem 2 shows that the Hamiltonian coupling to a
dissipative bath leads to decoherence at second order on
the slow system. The number of decoherence operators
Cj does not exceed nint the number of Hamiltonian cou-
pling terms, independently of the dimension of HF and
of the number of decoherence operators LFµ

involved in
the fast relaxation described by LF .

These formulas allow to compute the approximate
evolution of the coupled system, provided we integrate
or invert a superoperator LF that acts only on the fast
subsystem.

5 Illustrative example

We illustrate our results on a simple example: a system
constituted of two connected qubits (two-level systems).
We denote by σx,σy,σz the standard Pauli matrices,
and by σ− = (σx−iσy)/2 the energy loss operator (jump
from the higher to the lower of the two levels). An upper
letter denotes the qubit on which the operator is acting
non-trivially, e.g. σF

a = σa ⊗ 1S.
The first qubit is open to the outside world and thereby

subject to significant energy loss. It can also be driven
by a resonant electromagnetic field to stabilize it, on the
fast timescale, to a unique stationary state of nonzero
energy. This fast subsystem is coupled to another qubit,
which is well-protected i.e. which would keep its state in
absence of that coupling. For the sake of concreteness we
consider a dispersive coupling Hamiltonian. The dynam-
ics of the system is then given by the following master
equation:

dρ

dt
=u[σF

+ − σ
F
− , ρ] + γ(σF

−ρσ
F
+ − σ

F
+σ

F
−
ρ+ρσF

+σ
F
−

2 )

− iκ[σz ⊗ σz, ρ] .

Assuming γ ≫ κ, the first line corresponds to the fast
dynamics LF (ρ) and the second line to its perturbation.
To make an easy correspondence with the general theory,
we can choose the time-scale such that γ = O(1) and then
κ = ǫ ≪ 1.

For κ = 0, the steady state of the fast qubit is given
by :

ρF =
1 + x∞σx + z∞σz

2

with x∞ =
4γu

γ2 + 8u2
and z∞ = − γ2

γ2 + 8u2
.

For the first order approximation, we compute Tr(σzρF ) =
z∞ and formula (10) leads to :

dρS
dt

= −iκz∞[σz, ρs]

for the dynamics. For the parameterization of the slow
manifold by

(K0 + κK1)(ρF ⊗ ρS) +O(κ2) =
(

1− iκQ⊗ σz

)(

ρF ⊗ ρS
)(

1 + iκQ† ⊗ σz

)

,

we first write F = σz − z∞ 1F and to get Q we must
solve

σ−(QρF )σ+ − σ+σ−(QρF )+(QρF )σ+σ−

2 = z∞ρF − σzρF ,

with the constraint Tr(QρF ) = 0. Such operators can be
parameterized by Q = qxσx + qyσy + qzσz + qI1S with
qx, qy, qz, qI ∈ C. Analytically solving the linear system
in 4 variables is a more direct alternative than using the
formula (4) by integrating the dynamics; anyways, with
both methods we get

qx = − 2γ2+4u2

γ2u+8u3 ; qy = 2iγ2+8iu2

γ2u+8u3

qz = − 3γ
γ2+8u2 ; qI = 5γ3+16γu2

(γ2+8u2)2 .

Note that although Q appears to be large for u ≪ 1, in
fact the products QρF and QρFQ

† remain small.
For the second order approximation, the matrix Z

of Lemma 1 reduces to a scalar. Furthermore, with the
values just computed, Tr(FQρF ) turns out to be purely
real, so there is no second-order correction to the Zeno
Hamiltonian, and the slow dynamics is given by

dρS
dt

=− iκz∞[σz , ρs]

+ κ264γu2 (γ2 + 2u2)

(γ2 + 8u2)3
(

σzρSσz − ρS
)

.

The dissipative part expresses how the purity of the slow
qubit is affected by its coupling to the strongly dissipative
one: the uncertain energy level of the fast qubit induces a
growing phase uncertainty (dissipation with the σz oper-
ator). For u very small, ρF is close to a pure state (lowest

5



energy level) and ρS undergoes almost no phase uncer-
tainty – there remains essentially the deterministic phase
shift induced by the coupling to the lower energy level in
HF . For u very large, ρF is close to 1F/2 which seems
to indicate large uncertainty. But in fact, the system
is undergoing a sort of quantum dynamical decoupling
(see [16]): the value of σz on the fast subsystem gets av-
eraged out by our particular dynamics stabilizing 1F/2,
such that there remains no significant net coupling be-
tween slow and fast qubits. This explains physically why
with u ≫ 1, we indeed have dρS/dt = 0 up to second
order.

6 Conclusion

We have studied adiabatic elimination in composite open
quantum systems, assuming that one of the subsystems
converges on a fast time scale towards a unique steady
state. The other subsystem admits Hamiltonian dynam-
ics on a slow time scale and as is common in quantum
dynamics, the subsystems are connected via Hamiltonian
interaction. We treat this slow dynamics as a pertur-
bation, with respect to the trivial dynamics where the
slow subsystem would just stay at its initial condition.
Hence, using geometric singular perturbation theory and
center manifold theory, we have derived an asymptotic
expansion for the perturbation dynamics and for the slow
manifold, in terms of powers of the time-scale separa-
tion. The quantum specificity is to impose, at all orders
in this expansion, dynamics in the form of a Lindblad
master equation and a slow manifold parameterization
in terms of a completely positive trace preserving map
(Kraus form). We have solved the expansion with these
constraints up to second order, giving explicit expres-
sions which allow physical interpretations. The goal of
our future work is to provide a systematic procedure for
computing explicit Lindblad and Kraus forms at arbi-
trary orders. This would allow (i) to get accurate re-
sults for less significant time-scale separations – e.g. al-
lowing some quantum experiments to engineer stronger
coupling and faster operation of the slow system – and
(ii) to bound more precisely the effects of detrimental
ancillary couplings, as a function of different classes of
perturbations.
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[10] O. Černot́ık, D.V. Vasilyev, and K. Hammerer.
Adiabatic elimination of gaussian subsystems from
quantum dynamics under continuous measurement.
Phys. Rev. A, 92:012124, 2015.

[11] E. M. Kessler. Generalized schrieffer-wolff formalism
for dissipative systems. Phys.Rev.A, 86(1):012126,
2012.

[12] Z. et al. Leghtas. Confining the state of light to a
quantum manifold by engineered two-photon loss.
Science, 347(6224):853–857, 2015.

[13] M. Mirrahimi and P. Rouchon. Singular perturba-
tions and Lindblad-Kossakowski differential equa-
tions. IEEE Trans. Automatic Control, 54(6):1325–
1329, 2009.

[14] Florentin Reiter and A. S. Sørensen. Effective
operator formalism for open quantum systems.
Phys.Rev.A, 85(3):032111, 2012.

[15] Jun John Sakurai. Quantum Mechanics. Addison-
Wesley, 1994.

6



[16] L. Viola, E. Knill, and S. Lloyd. Dynamical de-
coupling of open quantum systems. Phys.Rev.Lett.,
82(12):2417, 1999.

A Inversion Lemmas on LF

Lemma 2 Let LF (ρF ) = 0, with LF of the form (1).

Then for any |ν〉 ∈ ker(ρF ) we have
√
ρFL

†
k|ν〉 = 0, for

all k.

Proof 4 For |ν〉 ∈ ker(ρF ) we have 〈ν|LF (ρF )|ν〉 =
∑

k〈ν|LkρFL
†
k|ν〉. Since LF (ρF ) = 0 each term of this

positive sum must annihilate. �

Lemma 3 Denote by ρ = ρF the unique solution of
LF (ρ) = 0. For a traceless operator Y such that ker(ρF ) ⊆
ker(Y), the traceless solution to X = L

−1
F (Y) also satis-

fies ker(ρF ) ⊆ ker(X).

Proof 5 Note that the operators have such kernels if
and only if they can be written X = X̃ρF , Y = ỸρF .
Since LF is a bijection on the space of traceless opera-
tors, the property is equivalent to showing that Y|ν〉 =
LF (X̃ρF )|ν〉 = 0 for all |ν〉 ∈ ker(ρF ). By using ρF |ν〉 =
0 and Lemma 2, we directly get

LF (X̃ρF )|ν〉 = X

(

iρFHF − 1
2ρF

∑

µ

L
†
Fµ

LFµ

)

|ν〉 .

Subtracting 0 = LF (ρF ) inside the bracket, applying ρF |ν〉 =
0 and Lemma 2 once again, we do get 0. �
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