Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Quantum Studies: Mathematics and Foundations Année : 2016

Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission

(1) , (1) , (2, 3) , (2, 4)
1
2
3
4

Résumé

We investigate the continuous quantum measurement of a superconducting qubit undergoing fluorescence. The fluorescence of the qubit is detected via a phase preserving heterodyne measurement, giving the fluorescence quadrature signals as two continuous qubit readout results. Using the stochastic path integral approach to the measurement physics, we derive most likely paths between boundary conditions on the state, and compute approximate time correlation functions between all stochastic variables via diagrammatic perturbation theory. We focus on paths that increase in energy during the continuous measurement. Our results are compared to Monte Carlo numerical simulation of the trajectories, and we find close agreement between direct simulation and theory. We generalize this analysis to arbitrary diffusive quantum systems that are continuously monitored.
Fichier principal
Vignette du fichier
1511.06677v1.pdf (882.62 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01403635 , version 1 (26-11-2016)

Identifiants

Citer

Andrew N Jordan, Areeya N Chantasri, Pierre Rouchon, Benjamin N Huard. Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission. Quantum Studies: Mathematics and Foundations, 2016, 3, pp.237 - 263. ⟨10.1007/s40509-016-0075-9⟩. ⟨hal-01403635⟩
333 Consultations
144 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More