P. Bacher, H. Madsen, and H. Nielsen, Online short-term solar power forecasting. Solar Energy, pp.1772-1783, 2009.
DOI : 10.1016/j.solener.2009.05.016

URL : http://orbit.dtu.dk/en/publications/online-shortterm-solar-power-forecasting(503fa350-1458-4076-9011-f57f75ee4d62).html

C. Chen, S. Duan, T. Cai, and B. Liu, Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy, pp.2856-2870, 2011.
DOI : 10.1016/j.solener.2011.08.027

E. Lorenz, J. Hurka, D. Heinemann, and H. Beyer, Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal, vol.2, pp.2-10, 2009.

E. Lorenz, T. Scheidsteger, J. Hurka, D. Heinemann, and C. Kurz, Regional PV power prediction for improved grid integration, Progress in Photovoltaics: Research and Applications, pp.757-771, 2011.
DOI : 10.1002/pip.1033

F. Grimaccia, M. Mussetta, and R. Zich, Neuro-fuzzy predictive model for PV energy production based on weather forecast, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp.2454-2457, 2011.
DOI : 10.1109/FUZZY.2011.6007687

J. Shi, W. Lee, Y. Liu, Y. Yang, and P. Wang, Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines, IEEE Transactions on Industry Applications, vol.48, issue.3, pp.1064-1069, 2012.
DOI : 10.1109/TIA.2012.2190816

H. Beyer, G. Heilscher, and S. Bofinger, A robust model for the MPP performance of different types of PV-modules applied for the performance check of grid connected systems, Eurosun. Freiburg, 2004.

T. Huld, R. Gottschalg, H. Beyer, and M. Topi?, Mapping the performance of PV modules, effects of module type and data averaging, Solar Energy, vol.84, issue.2, pp.324-338, 2010.
DOI : 10.1016/j.solener.2009.12.002

A. Bossavy, A. Michiorri, R. Girard, and G. Kariniotakis, The impact of available data history on the performance of photovoltaic generation forecasting models, 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp.1-4, 2013.
DOI : 10.1049/cp.2013.0971

URL : https://hal.archives-ouvertes.fr/hal-00870576

J. Hay and D. Mckay, Estimating Solar Irradiance on Inclined Surfaces: A Review and Assessment of Methodologies, International Journal of Solar Energy, vol.28, issue.1, pp.203-240, 1985.
DOI : 10.1080/01425918508914395

P. Loutzenhiser, H. Manz, C. Felsmann, P. Strachan, T. Frank et al., Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation, Solar Energy, vol.81, issue.2, pp.254-267, 2007.
DOI : 10.1016/j.solener.2006.03.009

C. Demain, M. Journée, and C. Bertrand, Evaluation of different models to estimate the global solar radiation on inclined surfaces, Renewable Energy, vol.50, pp.710-721, 2013.
DOI : 10.1016/j.renene.2012.07.031

C. Tao, D. Shanxu, and C. Changsong, Forecasting power output for gridconnected photovoltaic power system without using solar radiation measurement, Power Electronics for Distributed Generation Systems (PEDG) 2nd IEEE International Symposium on: IEEE, pp.773-777, 2010.
DOI : 10.1109/pedg.2010.5545754

H. Tat, R. Friedman, and J. , The elements of statistical learning, second edition: Data mining, inference, and prediction Quantile Regression, 2005.

S. Sperati, S. Alessandrini, P. Pinson, and G. Kariniotakis, The ???Weather Intelligence for Renewable Energies??? Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation, Energies, vol.8, issue.9, pp.9594-96199594, 2015.
DOI : 10.3390/en8099594

URL : https://hal.archives-ouvertes.fr/hal-01199212

. Zhang and H. Florita, A suite of metrics for assessing the performance of solar power forecasting, Solar Energy, vol.111, p.2014
DOI : 10.1016/j.solener.2014.10.016

H. Madsen, G. Kariniotakis, A. H. Nielsen, T. S. Nielsen, and P. Pinson, Standardizing the Performance Evaluation of ShortTerm Wind Power Prediction Models, Wind Engineering, vol.29, issue.6, pp.475-489, 2005.
DOI : 10.1260/030952405776234599

G. Kariniotakis and I. Marti, What Performance Can Be Expected by Short-term Wind Power Prediction Models Depending on Site Characteristics?, CD-Rom Proceedings, European Wind Energy Conference, pp.22-25, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00529266

P. Pinson, H. Nielsen, . Aa, J. K. Møller, H. Madsen et al., Non-parametric probabilistic forecasts of wind power: required properties and evaluation, Wind Energy, vol.129, issue.6, pp.497-516, 2007.
DOI : 10.1002/we.230

URL : https://hal.archives-ouvertes.fr/hal-00525361

P. Mc-sharry, P. Pinson, and R. Girard, Methodology for the evaluation of probabilistic forecasts " , Deliverable Dp-6.2, European (FP7) project SafeWind Available on line at: https, 2009.