P. Babin, D. Valle, G. Dendievel, R. Lourdin, D. Salvo et al., X-ray tomography study of the cellular structure of extruded starches and its relations with expansion phenomenon and foam mechanical properties, Carbohydrate Polymers, vol.68, issue.2, pp.329-340, 2007.
DOI : 10.1016/j.carbpol.2006.12.005

URL : https://hal.archives-ouvertes.fr/hal-00196744

F. Robin, J. Engmann, N. Pineau, H. Chanvrier, N. Bovet et al., Extrusion, structure and mechanical properties of complex starchy foams, Journal of Food Engineering, vol.98, issue.1, pp.19-27, 2010.
DOI : 10.1016/j.jfoodeng.2009.11.016

M. Amon and C. D. Denson, A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles, Polymer Engineering and Science, vol.2, issue.13, pp.1026-1034, 1984.
DOI : 10.1002/pen.760241306

A. Arefmanesh, S. G. Advani, and E. E. Michaelides, An accurate numerical solution for mass diffusion-induced bubble growth in viscous liquids containing limited dissolved gas, International Journal of Heat and Mass Transfer, vol.35, issue.7, pp.1711-1722, 1992.
DOI : 10.1016/0017-9310(92)90141-E

J. Fan, J. R. Mitchell, and J. M. Blanshard, A computer simulation of the dynamics of bubble growth and shrinkage during extrudate expansion, Journal of Food Engineering, vol.23, issue.3, pp.337-356, 1994.
DOI : 10.1016/0260-8774(94)90058-2

A. Arefmanesh and S. G. Advani, Nonisothermal bubble growth in polymeric foams, Polymer Engineering and Science, vol.21, issue.3, pp.252-260, 1995.
DOI : 10.1002/pen.760350306

H. G. Schwartzberg, J. P. Wu, A. Nussinovitch, and J. Mugerwa, Modelling deformation and flow during vapor-induced puffing, Journal of Food Engineering, vol.25, issue.3, pp.329-372, 1995.
DOI : 10.1016/0260-8774(94)00015-2

N. S. Ramesh and N. Malwitz, A non-isothermal model to study the influence of blowing agent concentration on polymer viscosity and gas diffusivity in thermoplastic foam extrusion, J. Cell. Plast, vol.35, pp.199-209, 1999.

M. Shimoda, I. Tsujimura, M. Tanigaki, and M. Ohshima, Polymeric Foaming Simulation for Extrusion Processes, Journal of Cellular Plastics, vol.37, issue.6
DOI : 10.1106/W4C0-CAG6-H3FM-LTJP

S. H. Alavi, S. S. Rizvi, and P. Harriott, Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion. II: Numerical simulation and experimental evaluation, Food Research International, vol.36, issue.4, pp.309-319, 2003.
DOI : 10.1016/S0963-9969(02)00223-5

L. Wang, G. Ganjyal, D. D. Jones, C. L. Weller, and M. A. Hanna, Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion, Advances in Polymer Technology, vol.56, issue.1, pp.29-45, 2005.
DOI : 10.1002/adv.20030

D. A. Pai, O. A. Blake, B. R. Hamaker, and O. H. Campanella, Importance of extensional rheological properties on fiber-enriched corn??extrudates, Journal of Cereal Science, vol.50, issue.2, pp.227-234, 2009.
DOI : 10.1016/j.jcs.2009.05.007

B. Vergnes, D. Valle, G. Delamare, and L. , A global computer software for polymer flows in corotating twin screw extruders, Polymer Engineering & Science, vol.11, issue.11, pp.1781-1792, 1998.
DOI : 10.1002/pen.10348

URL : https://hal.archives-ouvertes.fr/hal-00573794

D. Valle, G. Colonna, P. Patria, and A. , Influence of amylose content on the viscous behavior of low hydrated molten starches, Journal of Rheology, vol.40, issue.3, pp.347-362, 1996.
DOI : 10.1122/1.550747

D. Valle, G. Vergnes, B. Colonna, P. Patria, and A. , Relations between rheological properties of molten starches and their expansion behaviour in extrusion, Journal of Food Engineering, vol.31, issue.3
DOI : 10.1016/S0260-8774(96)00080-5

B. Vergnes, D. Valle, G. Tayeb, and J. , A specific slit die rheometer for extruded starchy products. Design, validation and application to maize starch, Rheologica Acta, vol.5, issue.5, pp.465-476, 1993.
DOI : 10.1007/BF00396177

D. Valle, G. Kozlowski, A. Colonna, P. Tayeb, and J. , Starch transformation estimated by the energy balance on a twin-screw extruder, Lebensm. Wiss. Technol, vol.22, pp.279-286, 1989.

A. Alvarez-martinez, K. P. Kondury, and J. M. Harper, A General Model for Expansion of Extruded Products, Journal of Food Science, vol.17, issue.2
DOI : 10.1111/j.1365-2621.1988.tb07768.x

A. Arhaliass, J. M. Bouvier, and J. Legrand, Melt growth and shrinkage at the exit of the die in the extrusion-cooking process, Journal of Food Engineering, vol.60, issue.2, pp.185-192, 2003.
DOI : 10.1016/S0260-8774(03)00039-6

F. Berzin, A. Tara, L. Tighzert, and B. Vergnes, Importance of coupling between specific energy and viscosity in the modeling of twin screw extrusion of starchy products, Polymer Engineering & Science, vol.35, issue.9, pp.1758-1766, 2010.
DOI : 10.1002/pen.21702

URL : https://hal.archives-ouvertes.fr/hal-00517633

C. Comuzzi, P. Polese, A. Melchior, R. Portanova, and M. Tolazzi, SOLVERSTAT: a new utility for multipurpose analysis. An application to the investigation of dioxygenated Co(II) complex formation in dimethylsulfoxide solution, Talanta, vol.59, issue.1, pp.67-80, 2003.
DOI : 10.1016/S0039-9140(02)00457-5

D. Valle, G. Vergnes, B. Lourdin, and D. , Viscous Properties of Thermoplastic Starches from Different Botanical Origin, International Polymer Processing, vol.22, issue.5, pp.471-479, 2007.
DOI : 10.3139/217.2057

URL : https://hal.archives-ouvertes.fr/hal-00510570

J. J. Brent, S. J. Mulvaney, C. Cohen, J. A. Bartsch, S. Ditudompo et al., Viscoelastic properties of extruded cereal melts The effect of temperature and moisture on the mechanical properties of extruded corn starch, Elastic properties of extruded starchy melts containing wheat bran using online rheology and dynamic mechanical thermal analysis, pp.313-328, 1997.

J. F. Eng-bizot, H. , L. Bail, P. Leroux, B. Davy et al., Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds, Process, structure and texture of extruded whole wheat, pp.414-423, 1997.

. La-détente-instantanée-À-la-sortie-de-la-filière-entraine, eau, donc la formation des bulles, accompagnée par une baisse de la température du produit, de la teneur en eau, et donc une augmentation de la température de la transition vitreuse Tg. C'est un phénomène complexe qui englobe la dynamique de nucléation, de croissance, de coalescence et de rupture des bulles dans une matrice viscoélastique, puis la solidification, voire l'effondrement à proximité de Tg. A l'heure actuelle, aucun modèle déterministe n'est disponible pour décrire ces phénomènes conjointement, En outre, un modèle déterministe serait trop complexe et ne pourrait être couplé avec le modèle mécanistique du logiciel de simulation d'extrusion bi-vis (Ludovic ® ), afin de prédire directement la structure cellulaire des mousses amylacées