P. Jop, O. Pouliquen, and Y. Forterre, A constitutive law for dense granular flows, Nature, vol.94, issue.7094, pp.727-730, 2006.
DOI : 10.1038/nature04801

URL : https://hal.archives-ouvertes.fr/hal-01432178

. Chevoir, Rheophysics of dense granular materials : Discrete simulation of plane shear flows, Phys. Rev. E, pp.72-021309, 2005.

B. Andreotti, Y. Forterre, and O. Pouliquen, Les milieux granulaires Entre fluide et solide, EDP Sciences, 2011.

L. Lacaze and R. R. , Axisymmetric Granular Collapse: A Transient 3D Flow Test of Viscoplasticity, Physical Review Letters, vol.102, issue.10, p.108305, 2009.
DOI : 10.1103/PhysRevLett.102.108305

I. A. Frigaard and C. Nouar, On the usage of viscosity regularisation methods for visco-plastic fluid flow computation, Journal of Non-Newtonian Fluid Mechanics, vol.127, issue.1, pp.1-26, 2005.
DOI : 10.1016/j.jnnfm.2005.01.003

N. Roquet and P. Saramito, An adaptive finite element method for Bingham fluid flows around a cylinder, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.31-32
DOI : 10.1016/S0045-7825(03)00262-7

M. Bercovier and M. Engelman, A finite-element method for incompressible non-Newtonian flows, Journal of Computational Physics, vol.36, issue.3, pp.313-326, 1980.
DOI : 10.1016/0021-9991(80)90163-1

J. Chauchat and M. Medale, A three-dimensional numerical model for dense granular flows based on the <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>??</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>I</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> rheology, Journal of Computational Physics, vol.256, pp.696-712, 2013.
DOI : 10.1016/j.jcp.2013.09.004

S. J. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. François, Éléments finis stabilisés pour le remplissage en fonderie à haut Reynolds, Thèse de doctorat, 2011.

T. Coupez and E. Hachem, Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.65-85, 2013.
DOI : 10.1016/j.cma.2013.08.004

URL : https://hal.archives-ouvertes.fr/hal-00866734

. Coupez, Stabilized finite element method for incompressible flows with high Reynolds number, J. Comput. Phys, vol.229, pp.8643-8665, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521881

G. P. Matson and A. J. Hogg, Two-dimensional dam break flows of Herschel???Bulkley fluids: The approach to the arrested state, Journal of Non-Newtonian Fluid Mechanics, vol.142, issue.1-3, pp.79-94, 2007.
DOI : 10.1016/j.jnnfm.2006.05.003

I. R. Ionescu, A. Mangeney, and F. Bouchut, Viscoplastic modeling of granular column collapse with pressure-dependent rheology, Journal of Non-Newtonian Fluid Mechanics, vol.219, pp.1-18, 2015.
DOI : 10.1016/j.jnnfm.2015.02.006

URL : https://hal.archives-ouvertes.fr/hal-01080456