A Hybrid Approach for the Analysis of Abnormal Ship Behaviors

Abstract : Current maritime traffic monitoring systems are essentials for a maritime situational awareness. However, they are not always adapted to the identification of risky behaviours of ships. It is very difficult for operators responsible for monitoring traffic to identify which vessels are at risk among all the shipping traffic displayed on their screen. We present in this paper a hybrid approach for analysing dangerous behaviours of ships based on AIS data. This approach is based on supervised and unsupervised analyses and it was developed in the frame of PhDs. Our approach is based on three complementary methodologies: (1) data mining for knowledge and pattern extraction for behaviour modelling, (2) ontological modelling of behaviour for an unsupervised detection and (3) geovisual analysis of large volume of data for a supervised detection of threats at sea. Three prototypes were developed to test our approach.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01421584
Contributeur : Magalie Prudon <>
Soumis le : jeudi 22 décembre 2016 - 15:37:59
Dernière modification le : lundi 12 novembre 2018 - 10:53:21
Document(s) archivé(s) le : mardi 21 mars 2017 - 10:45:19

Fichier

Napoli_MKDAD2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01421584, version 1

Citation

Aldo Napoli. A Hybrid Approach for the Analysis of Abnormal Ship Behaviors. Maritime Knowledge Discovery and Anomaly Detection Workshop, Jul 2016, Ispra, Italy. pp.83-86 - ISBN 978-92-79-61301-2. ⟨hal-01421584⟩

Partager

Métriques

Consultations de la notice

244

Téléchargements de fichiers

171