B. Budiansky, J. Hutchinson, and S. Slutsky, Void Growth and Collapse in Viscous Solids, p.1345, 1982.
DOI : 10.1016/B978-0-08-025443-2.50009-4

T. Cao, . Maire, C. Verdu, . Bobadilla, . Lasne et al., Characterization of ductile damage for a high carbon steel using 3d x-ray micro-tomography and mechanical testsapplication to the identication of a shear modied gtn model, Computational Materials Science, vol.84, p.175187, 2014.

K. Danas and P. Castañeda, Inuence of the lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, International Journal of Solids and Structures, issue.11, p.4913251342, 2012.

C. Feng and Z. Cui, A 3-D model for void evolution in viscous materials under large compressive deformation, International Journal of Plasticity, vol.74, 2015.
DOI : 10.1016/j.ijplas.2015.06.012

B. Grais, Methodes statistiques. Dunod, 2003.

H. Kakimoto, Y. Arikawa, . Takahashi, Y. Tanaka, and . Imaida, Development of forging process design to close internal voids, Journal of Materials Processing Technology, vol.210, issue.3, p.415422, 2010.
DOI : 10.1016/j.jmatprotec.2009.09.022

A. Keshavarz, G. Ghajar, and . Mirone, A new experimental failure model based on triaxiality factor and Lode angle for X-100 pipeline steel, International Journal of Mechanical Sciences, vol.80, p.175182, 2014.
DOI : 10.1016/j.ijmecsci.2014.01.007

B. Lee and M. Mear, Studies of the Growth and Collapse of Voids in Viscous Solids, Journal of Engineering Materials and Technology, vol.116, issue.3, p.348358, 1994.
DOI : 10.1115/1.2904298

W. Lode, Versuche über den einuÿ der mittleren hauptspannung auf das ieÿen der metalle eisen, kupfer und nickel, pp.11-12913939, 1926.

G. Mirone and D. Corallo, A local viewpoint for evaluating the inuence of stress 33

, triaxiality and lode angle on ductile failure and hardening, International Journal of Plasticity, vol.26, issue.3, p.348371, 2010.

L. Nazareth, A Relationship between the BFGS and Conjugate Gradient Algorithms and Its Implications for New Algorithms, SIAM Journal on Numerical Analysis, vol.16, issue.5, p.794800, 1979.
DOI : 10.1137/0716059

C. Park and D. Yang, A study of void crushing in large forgings, Journal of Materials Processing Technology, vol.72, issue.1, p.129140, 1996.
DOI : 10.1016/S0924-0136(97)00126-X

M. Saby, Understanding and modeling of void closure mechanisms in hot metal forming processes, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01110919

M. Saby, . Bernacki, P. Roux, and . Bouchard, Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes, Computational Materials Science, vol.77, 2013.
DOI : 10.1016/j.commatsci.2013.05.002

URL : https://hal.archives-ouvertes.fr/hal-00831553

M. Saby, P. Bernacki, and . Bouchard, Understanding and Modeling of Void Closure Mechanisms in Hot Metal Forming Processes: A Multiscale Approach, Procedia Engineering, vol.81, p.137142, 2014.
DOI : 10.1016/j.proeng.2014.09.140

URL : https://hal.archives-ouvertes.fr/hal-01110919

M. Saby, P. Bouchard, and M. Bernacki, Void closure criteria for hot metal forming: A review, Journal of Manufacturing Processes, vol.19, p.239250, 2014.
DOI : 10.1016/j.jmapro.2014.05.006

URL : https://hal.archives-ouvertes.fr/hal-01022635

M. Saby, P. Bouchard, and M. Bernacki, A geometry-dependent model for void closure in hot metal forming processes. Finite Elements in Analysis and Design, p.6375, 2015.

U. Ståhlberg, . Keife, A. Lundberg, and . Melander, A study of void closure during plastic deformation, Journal of Mechanical Working Technology, vol.4, issue.1, p.5163, 1980.
DOI : 10.1016/0378-3804(80)90005-4

M. Tanaka, M. Ono, and . Tsuneno, Factors contributing to crushing of voids during forging, J. Jpn. Soci. Technol. Plast, issue.306, p.27927934, 1986.