Efficient Computation of the Minimum of Shape Quality Measures on Curvilinear Finite Elements

Abstract : We present a method for computing robust shape quality measures defined for any order of finite elements. All type of elements are considered, including pyramids. The measures are defined as the minimum of the pointwise quality of curved elements. The computation of the minimum, based on previous work presented by Johnen et al. (2013) [1] and [2], is very efficient. The key feature is to expand polynomial quantities into Bézier bases which allows to compute sharp bounds on the minimum of the pointwise quality measures.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01425981
Contributeur : Magalie Prudon <>
Soumis le : mercredi 4 janvier 2017 - 10:01:35
Dernière modification le : lundi 12 novembre 2018 - 11:03:24
Document(s) archivé(s) le : mercredi 5 avril 2017 - 13:29:39

Fichier

Johnen_et_al_2016_Efficient_Co...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Amaury Johnen, Christophe Geuzaine, Thomas Toulorge, Jean-François Remacle. Efficient Computation of the Minimum of Shape Quality Measures on Curvilinear Finite Elements. Procedia Engineering, Elsevier, 2016, 25th International Meshing Roundtable, 163, pp.328 - 339. ⟨10.1016/j.proeng.2016.11.067⟩. ⟨hal-01425981⟩

Partager

Métriques

Consultations de la notice

320

Téléchargements de fichiers

338