G. Hache and H. M. Chung, The history of LOCA embrittlement criteria " , Topical meeting on LOCA fuel safety criteria, pp.37-64, 2001.

C. Corvalan-moya, Numerical modeling of oxygen diffusion in the wall thickness of Low-Tin Zircaloy-4 fuel cladding tube during high temperature (1100???1250??C) steam oxidation, Journal of Nuclear Materials, vol.400, issue.3, pp.196-204, 2010.
DOI : 10.1016/j.jnucmat.2010.03.004

D. Kaddour, Experimental determination of creep properties of Zirconium alloys together with phase transformation, Scripta Materialia, vol.51, issue.6, pp.515-519, 2004.
DOI : 10.1016/j.scriptamat.2004.05.046

URL : https://hal.archives-ouvertes.fr/hal-00166052

D. Kaddour, Microstructural influence on high temperature creep flow of Zr???1%NbO alloy in near-??, (??+??), and ?? temperature ranges in a high vacuum environment, Journal of Nuclear Materials, vol.408, issue.1, pp.116-124, 2011.
DOI : 10.1016/j.jnucmat.2010.11.025

URL : https://hal.archives-ouvertes.fr/hal-00553181

A. R. Massih, High-temperature creep and superplasticity in zirconium alloys, Journal of Nuclear Science and Technology, vol.17, issue.1, pp.21-34, 2013.
DOI : 10.1080/00223131.2013.750054

A. S. Rizkalla, R. A. Holt, and J. J. Jonas, Effect of Oxygen on the Deformation of Zircaloy-2 at Elevated Temperatures, Zirconium in the nuclear industry: fourth conference, ASTM STP 681, pp.497-513, 1979.
DOI : 10.1520/STP36698S

R. Choubey, Flow stress of oxygenenriched zircaloy-2 between 1023 and 1873K " , Zirconium in the nuclear industry: fifth conference, ASTM STP 754, pp.350-369, 1982.

B. Burton, Interaction of Oxidation and Creep in Zircaloy-2, ASTM STP 681, pp.561-585, 1979.
DOI : 10.1520/STP36701S

C. K. Chow, H. E. Rosinger, and P. C. Bera, Creep behavior of oxidized Zircaloy-4 fuel sheathing, Materials in the nuclear energy, 1982.

D. Tseng and K. Tangri, Deformation Behavior of Duplex Zircaloy-4-Oxygen Alloys, Metallurgical Transactions A, vol.27, issue.6, pp.1077-1082, 1982.
DOI : 10.1007/BF02643405

J. C. Brachet, Hydrogen content, preoxidation, and cooling scenario effects on postquench microstructure and mechanical properties of Zircaloy-4 and M5 alloys in LOCA conditions, J. ASTM Int, vol.5, issue.5, 2008.

A. Stern, Metallurgical and mechanical behavoir of PWR cladding materials oxidized at high temperature, MINES Paristech, 2008.

T. Forgeron, Experiment and Modeling of Advanced Fuel Rod Cladding Behavior Under LOCA Conditions: Alpha-Beta Phase Transformation Kinetics and EDGAR Methodology, Zirconium in the nuclear industry: twelfth international symposium, ASTM STP 1354, pp.256-278, 2000.
DOI : 10.1520/STP14303S

H. M. Chung and T. F. Kassner, Pseudobinary zircaloy-oxygen phase diagram, Journal of Nuclear Materials, vol.84, issue.1-2, pp.327-339, 1979.
DOI : 10.1016/0022-3115(79)90172-7

O. T. Woo and K. Tangri, Transformation characteristics of rapidly heated and quenched zircaloy-4-oxygen alloys, Journal of Nuclear Materials, vol.79, issue.1, pp.82-94, 1979.
DOI : 10.1016/0022-3115(79)90435-5

H. J. Frost and M. F. Ashby, Deformationmechanism maps: the plasticity and creep of metals and ceramics, 1982.

G. I. Taylor, Plastic strain in metals, J. Inst. Metals, vol.62, pp.307-424, 1938.