Full field modeling in a level set framework of Zener pinning phenomenon - discussion of classical limit mean grain size equation.

Benjamin Scholtes, Dmitrii Nikolaevich Ilin, Amico Settefrati, Nathalie Bozzolo, Andrea Agnoli, Marc Bernacki

To cite this version:
Benjamin Scholtes, Dmitrii Nikolaevich Ilin, Amico Settefrati, Nathalie Bozzolo, Andrea Agnoli, et al.. Full field modeling in a level set framework of Zener pinning phenomenon - discussion of classical limit mean grain size equation.. Superalloys 2016, Sep 2016, Seven Springs, Pennsylvania, United States. <hal-01430741>

HAL Id: hal-01430741
https://hal-mines-paristech.archives-ouvertes.fr/hal-01430741
Submitted on 10 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Full-field Modeling of the Zener Pinning Phenomenon in a Level Set Framework - Discussion of Classical Limiting Mean Grain Size Equation

B. Scholtesa, D. Ilina, A. Sattefratib, N. Bozzoloa, A. Agnolic, M. Bernackia

a Mines ParisTech, CEMEF – Centre de mise en forme des matériaux, CNRS UMR 7633, CS 10207 rue Claude Dauphine, 96904 Sophia Antipolis cedex, France
b Transvalor SA, 694 avenue Docteur Maurice Donat, 06350 Mougins, France
c Snecma Gennevilliers, 171 boulevard Volty, 92702 Colombes, France

Context

Pinning of grain boundaries by second phase particles is widely used to control the grain size during forming process of superalloys.

Classical Zener pinning law predicting the limiting mean grain size [1]:

$$\langle R_f \rangle = K \frac{r_p}{f_{gb}}$$

where \(\langle R_f \rangle\) is the mean grain size, \(r_p\) is the mean particle radius, and \(f_{gb}\) is the volume fraction of particles. \(K\), a parameter depending on the assumptions.

Relation to the volume fraction of particles located at grain boundaries \(f_{gb}\) [2]:

$$\langle R_f \rangle = K \frac{r_p}{f_{gb}}$$

Numerical model

Level Set Framework:

- Adaptive metric based meshing remeshing tool [4] was used.
- New direct and parallel reinitialization algorithm [5] was incorporated.

Boundary condition at precipitate/matrix interface:

$$\nabla \psi = \nabla \psi \cdot \hat{n} = \sin(\alpha)$$

Simulation parameters:

Material: Inconel 718

\(M = 2.3 \times 10^{-23} \text{m}^3/(\text{J}s)\)

\(\gamma = 0.6 \text{J/m}^2\)

\(\alpha = 0^\circ\) (incoherent precipitates)

Particle radii: 0.2, 0.4, 0.6, 0.8 \(\mu\text{m}\)

Area fraction: 1-8%

Domain size: 0.3 \(\times \text{0.3} \text{ mm}^2\)

Number of grains: 2600

Initial mean grain size: \(<R_0> = 3.35 \mu\text{m}\)

Time step: 0.1 s

16 CPUs (Xeon 1.2 GHz)

(computation time: 1-2 days)

2D simulation results for grain growth:

New mean field model for the limiting mean grain size

\(f_{gb}\) and \(<R_f>\) are measured at the steady state (when \(<R_f>\) becomes stable)

1) The radius of precipitates (for a given \(f\)) affects drastically the grain growth kinetics

2) \(K\) and \(m\) were found to depend on \(r_p/<R_0>\) (see figures for \(K\) and \(m\))

Expression obtained for the limiting grain size:

$$\langle R_f \rangle = 0.362<\langle R_0 \rangle f_{gb}^{-0.853(r_p/<R_0>)^{0.428}}$$

Current work

References