Full field modeling in a level set framework of Zener pinning phenomenon - discussion of classical limit mean grain size equation.

Benjamin Scholtes, Dmitrii Nikolaevich Ilin, Amico Settefrati, Nathalie Bozzolo, Andrea Agnoli, Marc Bernacki

To cite this version:

Benjamin Scholtes, Dmitrii Nikolaevich Ilin, Amico Settefrati, Nathalie Bozzolo, Andrea Agnoli, et al.. Full field modeling in a level set framework of Zener pinning phenomenon - discussion of classical limit mean grain size equation.. Superalloys 2016, Sep 2016, Seven Springs, Pennsylvania, United States. hal-01430741

HAL Id: hal-01430741
https://hal-mines-paristech.archives-ouvertes.fr/hal-01430741
Submitted on 10 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Full-field Modeling of the Zener Pinning Phenomenon in a Level Set Framework - Discussion of Classical Limiting Mean Grain Size Equation

B. Scholtes\(^a\), D. Ilin\(^a\), A. Sattefrati\(^b\), N. Bozzolo\(^a\), A. Agnoli\(^c\), M. Bernacki\(^d\)

\(^a\) Mines ParisTech, CEMEF - Centre de m\`e de m\`e en forme des mat\`eriaux, CNRS UMR 7633, CS 10507 rue Claude Daumesse, 96904 Sophia Antipolis cedex, France
\(^b\) Transvalor SA, 649 avenue Docteur Maurice Donat, 06250 Mougins, France
\(^c\) Snecma Gennevilliers, 171 boulevard Valmy, 92702 Colombes, france

Context

Pinning of grain boundaries by second phase particles is widely used to control the grain size during forming process of superalloys.

Classical Zener pinning law predicting the limiting mean grain size [1]:

\[
\langle R_f \rangle = K \frac{\langle r_p \rangle}{f_{gb}}
\]

\(< R_f >\) mean grain size, \(< r_p >\) mean particle radius, \(f\) - volume fraction of particles; \(K, m\) - parameters depending on the assumptions.

Relation to the volume fraction of particles located at grain boundaries \(f_{gb}\) [2]:

\[
\langle R_f \rangle = K \frac{\langle r_p \rangle}{f_{gb}}
\]

\(\gamma\) = 0° (incoherent precipitates)

Material: Inconel 718

\(M = 2.3 \times 10^{-23}\) m\(^3\)J/(J/s)

\(\gamma\) = 0.6 J/m\(^2\)

Particle radii \(r_p\): 0.2, 0.4, 0.6, 0.8 µm

Area fraction \(f\): 1-8%

Domain size: 0.3 \(\times\) 0.3 mm\(^2\)

Number of grains: 2600

Initial mean grain size: \(< R_0 > = 3.35\) µm

Time step: 0.1 s

16 CPUs (Xeon 1.2 GHz)

(computation time: 1-2 days)

Numerical model

LS function \(\varphi\) is defined over a domain \(\Omega\) as the signed distance to the interface \(\Gamma\) [3]:

\[
\varphi(x, t) = \pm \delta(x, \Gamma(t)), x \in \Omega,
\]

\[
\Gamma(t) = \{ x \in \Omega: \varphi(x, t) = 0 \}.
\]

\(\delta\) is the Dirac delta function.

Level Set Framework:

\(M\gamma^{-1}\mathbf{v}_{gb} - M_{gb}^{\delta(\varphi)} + \mathbf{v}_b - \nabla \psi_b(x, t) = 0,\)

\(\psi_b(x, t) = \psi_b^0(x),\)

\(J\) - time, \(M\) - mobility, \(\varphi\) - interface energy, \(\mathbf{v}_b\) - velocity due to stored energy gradient

Boundary condition at precipitate/matrix interface:

\[
\nabla \varphi \cdot \mathbf{t} = \nabla \psi \cdot \mathbf{t} = \sin(\alpha)
\]

- Adaptive metric based meshing remeshing tool [4] was used.
- New direct and parallel reinitialization algorithm [5] was incorporated.
- Recoloring scheme [6] was used to reduce the number of LS functions needed to represent the polycrystal

Simulation parameters:

- Material: Inconel 718
- \(M = 2.3 \times 10^{-23}\) m\(^3\)J/(J/s)
- \(\gamma\) = 0.6 J/m\(^2\)
- \(\mathbf{v}_{gb}\) and \(< R_f >\) are measured at the steady state (when \(< R_f >\) becomes stable)

1. The radius of precipitates (for a given \(f\)) affects drastically the grain growth kinetics
2. \(K\) and \(m\) were found to depend on \(r_p, f_{gb}\) (see figures for \(K\) and \(m\))

2D simulation results for grain growth:

New mean field model for the limiting mean grain size

Expression obtained for the limiting grain size:

\[
\langle R_f \rangle = 0.362 \langle R_0 \rangle f_{gb}^{-0.853} (r_p / \langle R_0 \rangle)^{0.428}
\]

Current work

- Initial microstructures with non-eqixed grains
- 3D simulations
- Evolutive second phase particles

References