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Abstract

In mechanism design, the gold standard solution concepts are dominant strategy incentive
compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly
unsophisticated) bidders from the need to engage in complicated strategizing. While incentive
properties are simple to state, their proofs are specific to the mechanism and can be quite
complex. This raises two concerns. From a practical perspective, checking a complex proof can
be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore,
from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties,
they may strategize in unpredictable ways.

To address both concerns, we explore techniques from computer-aided verification to construct
formal proofs of incentive properties. Because formal proofs can be automatically checked, agents
do not need to manually check the properties, or even understand the proof. To demonstrate,
we present the verification of a sophisticated mechanism: the generic reduction from Bayesian
incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and
Malekian. This mechanism presents new challenges for formal verification, including essential use
of randomness from both the execution of the mechanism and from the prior type distributions.
As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the
entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our
formalization, we provide the first formal verification of incentive compatibility for the celebrated
Vickrey-Clarke-Groves mechanism.

1 Introduction

Recent years have seen a surge of interest in mechanism design, as researchers explore connections
between computer science and economics. This fruitful collaboration has produced many sophisticated
mechanisms, including mechanism deployed in high-stakes auctions. Many mechanisms satisfy
properties that incentivize agents to behave in a straightforward and easily modeled manner; the
gold standard properties are dominant strategy truthful (in settings of complete information) and
Bayesian incentive compatible (in settings of incomplete information). While existing mechanisms
are impressive achievements, their increasing complexity raises two concerns.

The first concern is correctness. As mechanisms become more sophisticated, proofs of their
incentive properties have also grown in complexity, sometimes involving delicate reasoning about
randomization or tedious case analysis. Complex mechanisms are also more prone to implementation
errors. The second concern is more subtle. At its heart, mechanism design is algorithm design
together with a predictive model of how agents will decide to behave. Unlike algorithm design, where
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correctness can be verified in a vacuum, the success of a mechanism requires a realistic behavioral
model of the participants. How will agents behave when faced with a complex mechanism?

Different behavioral models assume different answers to this question. At one extreme, we may
assume that agents will coordinate to play a Nash equilibrium of the game and we can study concepts
like the price of anarchy [24, 8]. However, Nash equilibria are generally not unique, requiring
coordination and communication to achieve [17]. Even if information is centralized, equilibria can
be computationally hard to find [12]. Assuming that agents play at a Nash equilibrium may be
unrealistic unless agents possess strong computational resources.

At the other extreme, we may ask for mechanisms which are dominant strategy truthful or
Bayesian incentive compatible. In such mechanisms, agents can do no better than truthfully reporting
their type, even in the worst case or in expectation over the other agents’ types. These solution
concepts assume little about the bidders: When interacting with truthful mechanisms, agents do not
have to engage in complicated counter-speculation, communication, or computation—they merely
have to tell the truth!

However, even with mechanisms that are dominant strategy truthful or Bayesian incentive
compatible, participating agents must still believe that the mechanism is truthful. For complicated
mechanisms this is no small matter, as the incentive properties may require significant domain
expertise to verify. We are not the first to raise these concerns. Li [21] argued for simplicity
as a desired feature of auctions, proposing a formal definition; when designing the FCC auction
for reallocating radio spectrum, Milgrom and Segal [22] advocated an “obviously strategy-proof”
mechanism.

However, some useful mechanisms are just too complex to be obvious. Gross, DeArmond, and
Denice [14], reporting on experiences with the Denver and New Orleans school choice system, describe
the problem:

Both Denver and New Orleans leaders aggressively conveyed the optimal choosing strategy
to parents, and many of the parents we spoke with had received the message. Parents
reported to us that they were told to provide the full number of choices in their true order
of preference. The problem was that few parents actually trusted this message. Instead,
they commonly pursued strategies that matched their own inaccurate explanations of
how the match worked.

Hassidim, Marciano-Romm, Romm, and Shorrer [19] report similar behavior in a system for matching
Psychology students to slots in graduate programs in Israel. Even though the mechanism is dominant-
strategy incentive compatible, nearly 20% of applicants obviously misrepresented their preferences,
with possibly more applicants manipulating their reports in more subtle ways. Instead of restricting
mechanisms, can we give users evidence for the incentive properties?

In this work, we consider using formal proofs as certificates. Formal proofs bear a resemblance
to pen-and-paper proofs, but they are constructed in a rigorous fashion: They use a formal syntax,
have a precise interpretation as a mathematical proof, and can be built with a rich palette of
computer-assisted proof-construction tools. Compared to pen-and-paper proofs, the major benefit of
formal proofs is that once constructed, they can be checked independently and fully automatically
by a proof checker program.

Several previous works have explored formal methods for verifying mechanisms; Kerber, Lange,
and Rowat [20] provide an extensive survey. Broadly speaking, prior work falls into two groups.
Automated approaches check properties via extensive search, guided by intelligent heuristics. These
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techniques are more suited to verifying simpler properties of mechanisms, perhaps instantiated on a
specific input; properties like BIC lie beyond the reach of existing approaches.

More manual (sometimes called interactive) techniques divide the verification task into two
separate stages. In the first stage, the formal proof is constructed. This step typically involves human
assistance, perhaps encoding the mechanism in a specific form or constructing a formal proof. With
the help of the human, these techniques can prove rich properties like BIC and support the level of
generality that is typical of existing proofs—say, for an arbitrary number of agents, or for any type
space. In the second stage, the formal proof is checked. This step proceeds fully automatically: a
proof checking program verifies that the formal proof is constructed correctly. This neat division of
the verification task is a natural fit for mechanism design. We could imagine that the mechanism
designer—a sophisticated party who is intimately familiar with the details of the proof—has the
resources and knowledge to construct the formal proof. This proof could then be transmitted to the
agents, who can automatically check the proof with no knowledge of the details.

The main difference between manual techniques is in the amount of human labor for proof
construction, the most challenging phase. Existing verification approaches formalize the proof at a
level that is far more detailed than existing proofs on paper, requiring extensive expertise in formal
methods. Furthermore, existing works focus on general correctness properties—the output of a
mechanism should be a partition, the prices should be non-negative, etc., rather than incentive
properties.

In our work, we look to combine the best of both worlds: enabling a high level of automation
during proof construction, while supporting formal proofs that can capture rich incentive properties.
To demonstrate our approach, the primary technical contribution of our paper is a challenging case
study: a formal proof of Bayesian incentive compatibility (BIC) for the generic reduction from
algorithm design to mechanism design by Hartline, Kleinberg, and Malekian [18]. This example is
an attractive proof-of-concept for several reasons.

1. Both the reduction and the proof of Bayesian incentive compatibility are complex. The
mechanism is far from obviously strategy proof—indeed, the proof is a research contribution
first published at SODA 2011.

2. It is a general reduction, so certifying its correctness once certifies the incentive properties for
any instantiation of the reduction.

3. It relies on truthfulness of the Vickrey-Clarke-Groves (VCG) mechanism. As part of our efforts,
we provide the first formal verification of truthfulness for this classical mechanism.

4. It employs randomization both within the algorithm and within the agent behavior—agent
types are drawn from the known Bayesian prior.

The formal proofs bear a resemblance to the original proof, both easing formalization and making
the proofs more accessible to the mechanism design community.

To formalize the proofs, we adapt techniques from program verification. We view incentive
properties as a property of the mechanism and the agent’s payoff function, both expressed as
programs. Formal verification has developed sophisticated tools and techniques for verifying program
properties, but general-purpose tools require significant manual work. Verifying even moderately
complex mechanisms seems well beyond the reach of current technology. To ease the task, we view
incentive properties as relational properties : statements about the relationship between the outputs
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in two runs of the same program. Specifically, consider the program which calculates an agent’s
payoff under the mechanism and assume agents play their true value in the first run, while an agent
may deviate arbitrarily in the second run. If the output in the first run is at least the output in the
second run, then the mechanism is incentive compatible.

With this point of view, we can use tools specialized for relational properties. Such tools are
significantly easier to use and have achieved notable successes for verifying proofs from differential
privacy and cryptography. We use HOARe2, a recently-developed programming language that can
express and check relational properties [4]. HOARe2 has been used to verify differential privacy and
basic truthfulness in simple mechanisms under complete information, like the fixed price auction and
the random sampling mechanism of Goldberg, Hartline, Karlin, Saks, and Wright [13] for digital
goods.

Our work goes significantly beyond prior efforts in several respects. First, the mechanism we
verify is significantly more complex than previously considered mechanisms, and we analyze all uses
of the reduction, rather than just a single instance. Second, the mechanism operates in the partial
information setting, so the proof requires careful reasoning about randomization (from both the
mechanism and from the prior distribution on types).

The main strength of our approach lies in the high degree of automation during proof construction.
Once the mechanism and payoff functions have been encoded as programs, and once we have supplied
some annotations, we can construct most of the formal proof automatically with the aid of automated
solvers. However, there are a handful of particularly complex steps that HOARe2 fails to automatically
prove. To finish the proof, we manually build a formal proof for these missing pieces using EasyCrypt,
a proof assistant for relational properties, and Coq, a general purpose proof assistant.1

Related work. Closely related to our work, a recent paper by Caminati, Kerber, Lange, and
Rowat [7] uses the theorem prover Isabelle to verify basic properties of the celebrated Vickrey-
Clarke-Groves (VCG) mechanism. They consider general auction properties: the prices should be
non-negative, VCG should produce a partition of goods, etc. Moreover, their framework can be used
to automatically produce a correct, executable implementation of the mechanism. While their work
demonstrates that formal verification can be applied to verify properties of mechanisms, their results
are limited in two respects. First, they do not consider incentive properties, arguably the properties
at the heart of mechanism design. Second, they apply general techniques from computer-aided
verification that are not specifically tailored to mechanism design, requiring substantial effort to
produce the machine-checked proof. Our work uses verification techniques that are particularly
suited for incentive properties.

In the appendix we provide a primer on formal verification and discuss related work; a recent survey
by Kerber et al. [20] provides a comprehensive review of formal methods for verifying mechanism
design properties. The algorithmic game theory literature has for the most part ignored the problem
of verifying incentive properties, with a few notable exceptions. Recently, Brânzei and Procaccia [6]
define verifiably truthful mechanisms. Informally, such a mechanism is selected from a fixed family of
mechanisms such that for every truthful mechanism in that family, a certificate showing truthfulness
can be found in polynomial time. Brânzei and Procaccia [6] consider mechanisms represented
as decision trees and show that for the one-dimensional facility location problem, truthfulness
for mechanisms in this class can be efficiently verified by linear programming. In contrast, we

1Our formal proofs, along with code for the HOARe2 tool, are available online: https://github.com/ejgallego/
HOARe2/tree/master/examples/bic
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investigate significantly more complex mechanisms in exchange for forgoing worst-case polynomial
time complexity.

Mu’alem [23] considers the problem of property testing for truthfulness in single parameter
domains, which reduces to testing for a variant of monotonicity. Mu’alem [23] gives a tester that can
test whether there exist payments that guarantee that truthful reporting is a dominant strategy
with probability 1´ ε, given a polyp1{εq number of arbitrary evaluations of an allocation rule and
assuming agents have uniformly random valuations. In contrast, we assume direct access to the
code specifying the auction instead of merely black box access to the allocation rule, and we achieve
verification of exact truthfulness, not just approximate truthfulness. We are also able to verify
mechanisms in more complex settings, e.g., arbitrary type spaces, randomized mechanisms, and
arbitrary priors.

Our work is also related to the literature on automated mechanism design, initiated by Conitzer
and Sandholm [11] (see Sandholm [25] or Conitzer [10, Chapter 6] for an introduction). In broad
strokes, automated mechanism design seeks to generate truthful mechanisms which optimize the
designer’s objectives. This is often accomplished by solving explicitly for the distribution on outcomes
defining a mechanism using a mixed integer linear program encoding the incentive constraints
and objective, an NP hard problem that can often be solved efficiently on typical instances [10].
Automated mechanism design targets a more difficult problem than we do: it seeks not just to verify
the truthfulness of a given mechanism, but to optimize over all truthful mechanisms. However, these
techniques have some limitations: they produce explicit representations of mechanisms requiring size
exponential in the number of bidders, and they use an explicit integer linear program, requiring a
finite type space. In contrast, by only requiring full automation for proof verification and not proof
construction, we are able to use a much more sophisticated toolkit—including symbolic manipulation,
not just numeric optimization—and verify significantly more complex mechanisms that can have
infinite outcome and type spaces.

2 Main example: RSM

As our main proof of concept, we verify that the Replica-Surrogate-Matching (RSM) mechanism due
to Hartline et al. [18] is Bayesian incentive compatible. The RSM mechanism reduces mechanism
design to algorithm design: given an algorithm A that takes in agents’ reported types and selects an
outcome, the RSM mechanism turns A into a Bayesian incentive compatible mechanism. Accordingly,
our formal proof will carry over to any instantiation of RSM. We first review the original proof by
Hartline et al. [18]. Then, we describe our verification process, from pseudocode to a fully verified
mechanism.

Let’s begin with the standard notion of Bayesian incentive compatibility. We assume there are
n agents, each with a type ti drawn from some set of types T . Furthermore, we have access to
a distribution µ on types, the prior. A mechanism is a (possibly randomized) function from the
inputs—one per agent—to a single outcome o from set O, and a real-valued payment pi for each
agent. Without loss of generality, we will assume that the agents each report a type from T as their
input. Agents have a valuation vpt, oq for type t and outcome o. Agents have quasi-linear utility :
their utility for outcome o and payment p is vpt, oq ´ p. We will write ps, t´iq for the vector obtained
by inserting s into the ith slot of t. Then, we want to check the following property.

Definition 2.1. A mechanism M is Bayesian incentive compatible (BIC) if for every agent i and
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1. Pick i uniformly at random from rms;

2. Build a replica type profile ~r by taking m´ 1 samples from µ for ~r´i, setting ri “ t;

3. Build a surrogate type profile ~s by taking m samples from µ;

4. Build a bipartite graph with nodes ~r, ~s, and edges with weight

wpr, sq “ Et´i„µn´1rvpr,Aps, t´iqqs;

5. Run the VCG procedure on the generated graph, and return the surrogate s that is matched
to the replica in slot i, and the appropriate payment p.

Figure 1: Procedure R with parameter m

types ti, t1i, we have

Et´i„µn´1rvpti,Mpti, t´iqq ´ pipti, t´iqs ě Et´i„µn´1rvpti,Mpt
1
i, t´iqq ´ pipt

1
i, t´iqs.

The expectation is taken over the types t´i of the other agents (drawn independently from µ) and
any randomness used by the mechanism.

2.1 The RSM mechanism

Now, let’s consider the mechanism: the RSM mechanism in the “idealized model” by Hartline et al.
[18]. We will first recapitulate their proof, before explaining in detail how we verify it.

RSM is a construction for turning an algorithm A : Tn Ñ O into a BIC mechanism. The process
is easy to describe: each agent individually transforms their type ti to a surrogate type si by applying
the Replica-Surrogate-Matching procedure R. This procedure also produces a payment pi for the
agent. Then, the surrogates s are fed into the algorithm A, which produces the final outcome.

The procedure R is described in Figure 1. Let m be an integer parameter—the number of
replicas. Given input type t, we take m´ 1 independent samples from µ, the (r)eplicas. We then
take m independent samples from µ, the (s)urrogates. Finally, we select an index i uniformly at
random from rms, and place the original type t in the ith “slot” of the replicas ~r. We will consider
the replicas as “buyers”, and the surrogates as “goods”, and assign a numeric “value” for every pair of
buyer and good. The value of replica r for surrogate s is set to be

wpr, sq “ Et´i„µn´1rvpr,Aps, t´iqqs, (1)

that is, the expected utility of an agent with true type r reporting type s. Finally, RSM runs the
well-known Vickrey-Clarke-Groves mechanism [26, 9, 15] to match each replica with a surrogate in
this market. The output is the surrogate matched to replica in slot i (the original type t), along
with the payment charged.

The original proof. The proof of BIC from Hartline et al. [18] proceeds in two steps. First, they
show that R is distribution preserving.
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Lemma 2.1 (Hartline et al. [18]). Sampling a type t „ µ as input to R gives the same distribution
(µ) on the surrogates output.

Proof. When R constructs the list of buyers before applying VCG, the distribution over buyers
is simply m independent samples from µ, no matter the value of i. So, we can delay sampling i
and selecting the surrogate until after running VCG (via the principle of deferred decision). VCG
produces a perfect matching of replicas to surrogates, and the surrogates are also m independent
samples from µ. So, sampling a random replica i and returning the matched surrogate is an unbiased
sample from µ.

With the lemma in hand, Hartline et al. [18] show that RSM is BIC.

Theorem 2.1 (Hartline et al. [18]). The RSM mechanism is BIC.

Proof. Consider bidder i with type ti, and fix the randomness for bidder i. In the VCG procedure
of R, the value of i’s replica for surrogate s is wpti, sq: the expected utility for submitting s to A
while having true type ti, assuming that all other inputs to A are drawn from µ.

In the RSM mechanism, the other inputs to A are computed by sampling a type tj „ µ, and
taking the surrogate produced by Rptjq. By Lemma 2.1, the distribution over surrogates is µ.
Therefore, wpti, sq is bidder i’s expected utility in the RSM mechanism for ending up matched to
s. Since VCG is incentive compatible, bidder i has no incentive to deviate to any other bid t1i. By
taking expectation over the randomness of i, we get the result.

Crucially, Theorem 2.1 relies on the truthfulness property of the VCG mechanism. We have also
verified this property but we postpone our discussion to Appendix B; the verification of RSM is
more interesting.

3 Verifying RSM

Now that we have seen the mechanism, we present our verification step by step.

1. We write the RSM mechanism as a program in the
HOARe2 programming language.

2. We annotate the program with assertions expressing
the BIC property, and some additional intermediate
facts (lemmas).

3. The tool automatically generates the verification con-
ditions (VCs), which imply BIC.

4. The tool uses automatic solvers to check the verification
conditions; they may fail to prove some assertions.

5. Finally, we prove the remaining verification conditions
by using an interactive prover.

program encoding the mechanism

annotated program

collection of VCs

VCs not solvable automatically

proof of incentive property

expert adds assertions

proof checker generates VCs

automatic solver checks VCs

solve VCs in interactive solver

The outcome of these five steps is a formal proof that the RSM mechanism enjoys the BIC
property. In the following, we will combine the description of different steps in the same subsection.
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1 def Rsmdet(j, coins, truety, report) =
2 (rs´i, ss, i) = coins;
3 vcgbuyers = (report, rs´i);
4 (surrs, pays) = Vcg(vcgbuyers, ss);
5 return (surrs[j], pays[j])

Figure 2: Defining RSM

1 def Expwts(j, r, s) =

2 sample others´j = mun´1;
3 algInput = (s, others´j );
4 outcome = alg(algInput);
5 return expect_num { value(r, outcome) }

Figure 3: Defining weights

Step 1: Modeling the mechanism

To express RSM as a program, we will code a single agent’s utility function when running the RSM
mechanism, when all the other agents report truthfully and have types drawn from µ. Remembering
that we consider truthfulness as a relational property, we will then reason about what happens when
the agent reports truthfully, compared to what happens when the agent deviates.

We model types and outcomes as drawn from (unspecified) sets T and O, and we assume an
algorithm alg mapping Tn Ñ O. We will consider what happens when the first bidder deviates.
This is without loss of generality: if j deviates, we can consider the RSM mechanism with alg
replaced by a version alg’ that first rotates the jth bidder to the first slot, when proving BIC for
the first bidder under alg’ implies BIC for the jth bidder under A. For the values, we will assume
an arbitrary valuation function value mapping T ˆO Ñ R. In the code, we will write mu for the
prior distribution µ.

Let’s begin by coding the RSM transformation R, which transforms an agent’s type into a
surrogate type and a payment. It will be convenient to separate the randomness from R. We encode
R as a deterministic function Rsmdet, which takes as input the agent number j, the random coins
coins, and the input type report. We will have Rsmdet take an additional parameter truety
representing an agent’s true type. This variable does not show up in the code–RSM does not have
access to this information—but will be useful later for expressing Bayesian incentive compatibility
as a relational property. We will model the slot as a natural number.

In Appendix B we will discuss our treatment of VCG in more detail, but it is enough to know
that VCG takes a list of buyers and a list of goods. VCG will output a permutation of goods
(representing the assignment), and a corresponding list of payments. In Figure 2, bolded words
are keywords and primitive operations of HOARe2. For a brief explanation, line (2) names the
three components of coins: the replicas rs´i, the surrogates ss, and the slot i; line (3) puts the
agent’s input type report in the proper slot for the replicas; line (4) calls VCG on the list of buyers
vcgbuyers produced at line (3) and the list of surrogates ss as goods; and line (5) returns the
surrogate and payment.

The Expwts function in Figure 3 implements the w function from Equation (1), with the
additional parameter j to indicate the agent. In Figure 3, line (2) samples n´ 1 types others´j
from µ for the other agents. These are the types on which the expectation is taken in Equation (1).
Line (4) uses the algorithm alg to compute the outcome outcome when the agent j report type s.
Finally, the expect_num on line (5) takes the expected value of the distribution over reals defined by
evaluating the value function value on the true type r and on the randomized outcome of the alg.

To check the BIC property, we will code the expected utility for the first bidder and then check
that it is maximized by truthful reporting. To break down the code, we will suppose that the
function takes in a list of functions othermoves that transform each of the other bidder’s type.

The distribution rsmcoins defines the distribution over the coins to R, i.e., sampling the replicas
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1 def Util(othermoves, myty, mybid) =
2 return (expect rsmcoins Helper)
3
4 def Helper(coins) =
5 (mysur, mypay) =
6 Rsmdet(1, coins, myty, mybid);
7 myval = expect_num {
8 for i “ 1 . . . n ´ 1:
9 sample othersurs[i] =

10 (sample otherty = mu;
11 othermoves[i](otherty));
12 algInput = (mysur, othersurs);
13 outcome = alg(algInput);
14 value(myty, outcome) };
15 return (myval - mypay)

Figure 4: Defining utility

1 def Others(j, t) =
2 sample coins = rsmcoins;
3 (s, p) = Rsmdet(j, coins, t);
4 return s
5
6 def MyUtil(ty,bid) = Util(Others,ty,bid)

Figure 5: Defining other reports

~r´i, the surrogates ~s, and the coin i. We encoded this distribution in HOARe2, but we elide it for lack
of space. In the code in Figure 4, on line (2) we take expectation of the function Helper over the
distribution rsmcoins, with expect. In Helper, we then call Rsmdet on line (6) to compute the
surrogate and payment for the agent, passing 1 since we are calculating the utility for the first agent.
We sample the other agents’ types and transform them on lines (9–11), and we take expectation of
the first agent’s value for the outcome on lines (7–14). Finally, we subtract off the payment on line
(15), giving the final utility for the first agent.

To complete our modeling of RSM, in Figure 5 we plug in Others into the utility function: it
simply takes an agent number and a type as input, samples the coins from rsmcoins, and returns
the surrogate from calling Rsmdet. So far, we have just written code describing how to implement
the RSM mechanism and how to calculate the utility for a single bidder. Now, we express the BIC
property as a property about this program and check it with HOARe2.

Step 2: Adding assertions

We specify properties in HOARe2 by annotating variable and functions with assertions of the
form tx :: Q | φu, read as “x is an element of set Q and satisfies the logical formula φ”. These
assertions serve two purposes: (1) they express facts to be proved about the code and (2) they assert
mathematical facts about primitive operations like expect and expect_num. The system will then
formally verify that the first kind of annotations are correct, while assuming the assertions of the
second kind as axioms.

A key feature of HOARe2 is that the assertion φ is relational : it can refer to two copies of each
variable x, denoted x1 and x2. Roughly, we may make assertions about two runs of the same program
where in the first program we use variables x1, and in the second run we use variables x2.2 For
instance, truthfulness corresponds to the following assertions:

tty :: T | ty1 “ ty2u (true type is equal on both runs)
tbid :: T | bid1 “ ty1u (bid is the true type in the first run)

tutility :: R | utility1 ě utility2u (utility is higher in the first run)

Our goal is to check these assertions for the function MyUtil, which computes an agent’s utility
in expectation over the other types. Along the way we will use several intermediate facts, encoded

2These annotations are known as relational refinement types in the programming language literature. We will call
them assertions or annotations to avoid clashing with agent types.
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as assertions in HOARe2. Assertions on primitive operations, like expect and expect_num, are
the axioms. Assertions on larger chunks of code are proved correct from the assertions on the
subcomponents.

Monotonicity of expectation. Since the BIC property refers to expected utility, we use an
expectation operation expect when computing an agent’s utility (line (2) of the Util code). To
show BIC, we need a standard fact about monotonicity of expected value: for functions f ď g,
Erf s ď Ergs taken over the same distribution. This can be encoded with an annotation for expect:

distr tc :: C | c1 “ c2u Ñ tf :: C Ñ R | @x. f1pxq ď f2pxqu Ñ te :: R | e1 ď e2u.

This annotation indicates that expect is a function that takes two arguments and returns a real
number. In each of the three components, the annotation before the bar specifies the type of the
value: The first argument is a distribution over C, the second argument is a real-valued function
C Ñ R, and the return value is a real number. The logical formulas after the pipe describe how
two runs of the expectation function are related. The first component states that in the two runs,
the distributions are the same. The second component states that the function f in the first run is
pointwise less than f in the second run. The final component asserts that the expected value—a
real number—is less on the first run than on the second run.

If think of the distribution as being over the coins rsmcoins, this fact allows us to prove
deterministic truthfulness for each setting of the coins, then take expectation over the coins in order
to show truthfulness in expectation. This is what we need to prove for the BIC property, and is
precisely the first step in the original proof of Theorem 2.1.

Distribution preservation. When we consider a single agent, truthful bidding may not be BIC
for arbitrary transformations of the other agents’ types (othermoves in the Util code). As indicated
by Lemma 2.1, we also need the transformation to be distribution preserving: the output distribution
on surrogates must be the same as the distribution on input types.

Much as we did above, we can capture this property with appropriate annotations. While we
have so far used rather simple formulas φ that only mention variables in tx :: T | φu, in general the
formulas φ can describe assertions about programs.3 We can annotate the othermoves argument to
Util to require distribution independence:

tothermoves : list pT Ñ distr T q | @j P rns. psample ot = mu; othermoves[j](ot)q “ muu

To read this, othermoves is a list of functions fj that take a type and return a distribution on
types, such that if we sample a type from mu and feed it to fj , the resulting distribution (including
randomness over the initial choice of type) is equal to mu. In other words, this asserts the distribution
preservation property of Lemma 2.1 for each of the other agent’s transformations.

Facts about VCG. Recall that Vcg takes a list of bidders and a list of goods, and produces a
permutation of the goods and a list of payments as output. In our case, the bidders and goods are
both represented as types in T , so we can annotate the Vcg as:

tbuys :: listT u Ñ tgoods :: listT u Ñ tpalloc, paysq :: listT ˆ listR | vcgTruth^ vcgPermu.

3Of course, we need to actually check the assertions eventually, whether by automated solvers or manual techniques.
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The two assertions vcgTruth and vcgPerm reflect two facts about VCG. The first is that VCG is incentive
compatible; this can be encoded like we have already seen, with a slight twist: We require that VCG
is IC for a deviation by any player rather than just the first player, since the possibly deviating
player may be in any slot. More precisely, we define the formula

vcgTruth :“ @j P rms . pbids´j,1 “ bids´j,2 q ùñ

Expwts(j, bids1[j], alloc1[j]) ´ pays1[j] ě Expwts(j, bids1[j], alloc2[j])q ´ pays2[j].

We treat the bid in the first run (bids1[j]) as the true type, and the bid on the second run (bids2[j])
as a possible deviation—this is why we evaluate the jth bidder’s expected utility using the same
true type in the two runs. The second fact we use is that VCG matches buyers to the goods. In
fact, since the number of goods (surrogates) and the number of buyers (replicas) are equal, VCG
produces a perfect matching. We express this by asserting that VCG outputs an assignment that is
a permutation of the goods:

vcgPerm :“ isPerm goods1 alloc1 ^ isPerm goods2 alloc2 .

We verify these properties for a general version of VCG. The verification follows much like the current
verification; we discuss the details in Appendix B.

Step 3: Handling proof obligations

After providing the annotations, HOARe2 is able to automatically check most of the annotations with
SMT solvers4—fully automated solvers that check the validity of logical formulas. Such solvers are a
staple of modern formal verification. While the underlying problem is often undecidable, modern
solvers employ sophisticated heuristics that can efficiently handle large formulas in practice.

We are able to use SMT solvers to automatically check all but three proof obligations; for these
three facts the SMT solvers time out without finding a proof. The first two are uninteresting, and
we manually construct the formal proof using the Coq proof assistant. The last obligation is more
interesting: it corresponds to Lemma 2.1. Concretely, when we define an agent’s expected utility

def MyUtil(ty,bid) = Util(Others,ty,bid),

recall that Util asserts that Others is distribution preserving. This is precisely Lemma 2.1, and
the automated solvers fail to prove this automatically.

To handle this assertion we use a more manual tool called EasyCrypt [2, 3], a proof assistant
that allows the user prove equivalence of two programs A and B by manually transforming the
source code of A until the source code is identical to B.5 We prove that Others is equivalent to
the program that simply samples from mu by transforming the code for Others (including the code
sampling the coins of the mechanism, rsmcoins) in several stages. We present the code in Figure 6
with two replicas, for simplicity.

The proof boils down to showing that each step transforms a program to an equivalent program.
Our starting point is stage1, the program that samples an agent’s type from mu and runs Others
on the sampled value. Unfolding the definition of Others, Rsmdet, rsmcoins and including the
code that puts the agent’s input type in the proper slot for the replicas, we obtain program stage2.

4Satisfiability-Modulo-Theory, see e.g., [1] for a survey.
5This is a common proof technique in cryptographic proofs, known as game hopping [5, 16].
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def stage1 =
sample ot = mu;
Others(ot)

def stage2 =
sample ot = mu;
sample r’ = mu;
sample s1 = mu;
sample s2 = mu;
sample i = flip;

if i then
(r1,r2) = (ot,r’);
else
(r1,r2) = (r’,ot);

bs = (r1,r2);
gs = (s1,s2);

(ss,ps) = Vcg(bs,gs);
(o1,o2) = ss;

if i then o1 else o2

def stage3 =
sample ot = mu;
sample r’ = mu;
sample s1 = mu;
sample s2 = mu;

(r1,r2) = (ot,r’);

bs = (r1,r2);
gs = (s1,s2);

(ss,ps) = Vcg(bs,gs);
(o1,o2) = ss;

sample i = flip;
if i then o1 else o2

def stage4 =
sample s1 = mu;
sample s2 = mu;
sample i = flip;
if i then s1

else s2

Figure 6: Code transformations to prove Lemma 2.1.

From there, the main step is to show that we don’t need to place the replicas in a random order
before calling Vcg. Then, we can move the sampling for i down past the Vcg call, giving stage3.
Finally, using the fact that the output assignment ss of Vcg is a permutation of the goods (s1, s2),
we obtain the program stage4 and conclude that this is equivalent to taking a single sample from
mu. This chain of transformations has been verified with EasyCrypt.

4 Perspective

Now that we have presented our verification of the RSM mechanism, what have we learned and
what does formal verification have to offer mechanism design going forward? In our experience,
while formal verification of game theoretic mechanisms is by no means trivial, verification tools are
maturing to a point where practical verification of complex mechanisms can be envisioned. Our
verification of RSM, for instance, involved only coding the utility function and adding annotations,
most of which can be checked automatically. The most time-consuming part was manually proving
the last few assertions.

At the same time, the range of mechanisms that can be verified is less clear. There is an art
to encoding a mechanism in the right way, and some mechanisms are easier to verify than others.
Since we are trying to verify proofs, the crucial factor is the complexity of the proof rather than the
complexity of the mechanism. Clean proofs where, each step reasons about localized parts of the
program, are more amenable to verification; proof patterns—like universal truthfulness—also help.

In sum, formal verification can manage the increasing complexity of mechanisms by formally
proving incentive properties for everyone—mechanism designers, mechanism users, and even mecha-
nism programmers. We believe that the tools to verify one-shot mechanisms are already here. So,
we propose a challenge: Try using tools like HOARe2 to verify your own mechanisms, putting formal
verification techniques to the test. We hope that one day soon, verification for mechanisms will be
both easy and commonplace.

Acknowledgments. We thank the anonymous reviewers for their careful reading; their suggestions
have significantly improved this work. We especially thank Ran Shorrer for pointing out empirical
evidence that agents may manipulate their reports even when the mechanism is truthful. This work

12



was partially supported by NSF grants TWC-1513694, CNS-1237235, CNS-1565365 and a grant
from the Simons Foundation (#360368 to Justin Hsu).

References

[1] C. Barrett, R. Sebastini, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In Handbook
of satisfiability, volume 185. IOS press, 2009.

[2] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security proofs for
the working cryptographer. In IACR International Cryptology Conference (CRYPTO), Santa
Barbara, California, pages 71–90, 2011.

[3] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub. EasyCrypt: A
tutorial. In Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial
Lectures, volume 8604 of Lecture Notes in Computer Science, pages 146–166. Springer-Verlag,
2014.

[4] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth, and P.-Y. Strub. Higher-order
approximate relational refinement types for mechanism design and differential privacy. In ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Mumbai,
India, pages 55–68, 2015.

[5] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. volume 4004 of Lecture Notes in Computer Science, pages 409–426.
Springer-Verlag, 2006.

[6] S. Brânzei and A. D. Procaccia. Verifiably truthful mechanisms. In ACM SIGACT Innovations
in Theoretical Computer Science (ITCS), Princeton, New Jersey, 2014.

[7] M. B. Caminati, M. Kerber, C. Lange, and C. Rowat. Sound auction specification and
implementation. In ACM SIGecom Conference on Economics and Computation (EC), Portland,
Oregon, pages 547–564, 2015.

[8] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. In ACM
SIGACT Symposium on Theory of Computing (STOC), Baltimore, Maryland, pages 67–73.
ACM, 2005.

[9] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

[10] V. Conitzer. Computational aspects of preference aggregation. PhD thesis, IBM, 2006.

[11] V. Conitzer and T. Sandholm. Complexity of mechanism design. In Conference on Uncertainty in
Artificial Intelligence (UAI), Edmonton, Alberta, pages 103–110. Morgan Kaufmann Publishers
Inc., 2002.

[12] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

[13] A. V. Goldberg, J. D. Hartline, A. R. Karlin, M. Saks, and A. Wright. Competitive auctions.
Games and Economic Behavior, 55(2):242–269, 2006.

13

http://arxiv.org/abs/1407.6845
http://arxiv.org/abs/1407.6845
https://www.iacr.org/archive/eurocrypt2006/40040415/40040415.pdf
https://www.iacr.org/archive/eurocrypt2006/40040415/40040415.pdf
http://doi.acm.org/10.1145/2764468.2764511
http://doi.acm.org/10.1145/2764468.2764511
http://dl.acm.org/citation.cfm?id=1060600


[14] B. Gross, M. DeArmond, and P. Denice. Common enrollment, parents, and school choice: Early
evidence from denver and new orleans. making school choice work series. Technical report,
Center on Reinventing Public Education (CRPE), University of Washington, 2015.

[15] T. Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, 41(4):
617–631, 1973.

[16] S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint
Archive, Report 2005/181, 2005.

[17] S. Hart and Y. Mansour. The communication complexity of uncoupled nash equilibrium
procedures. In ACM SIGACT Symposium on Theory of Computing (STOC), San Diego,
California, pages 345–353. ACM, 2007.

[18] J. D. Hartline, R. Kleinberg, and A. Malekian. Bayesian incentive compatibility via matchings.
In ACM–SIAM Symposium on Discrete Algorithms (SODA), San Francisco, California, pages
734–747. SIAM, 2011.

[19] A. Hassidim, D. Marciano-Romm, A. Romm, and R. I. Shorrer. ‘strategic behavior’ in a
strategy-proof environment. Working paper, 2016.

[20] M. Kerber, C. Lange, and C. Rowat. An introduction to mechanized reasoning. CoRR,
abs/1603.02478, 2016.

[21] S. Li. Obviously strategy-proof mechanisms. SSRN Electronic Journal.

[22] P. Milgrom and I. Segal. Deffered acceptance auctions and radio spectrum reallocation, 2014.

[23] A. Mu’alem. A note on testing truthfulness. In Electronic Colloquium on Computational
Complexity (ECCC), number 130, 2005.

[24] T. Roughgarden. Selfish routing and the price of anarchy, volume 174. MIT Press, 2005.

[25] T. Sandholm. Automated mechanism design: A new application area for search algorithms. In
International Conference on Principles and Practice of Constraint Programming (CP), Kinsale,
Ireland, pages 19–36. Springer-Verlag, 2003.

[26] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
Finance, 16(1):8–37, 1961.

14

http://www.crpe.org/publications/common-enrollment-parents-and-school-choice-early-evidence-denver-and-new-orleans
http://www.crpe.org/publications/common-enrollment-parents-and-school-choice-early-evidence-denver-and-new-orleans
https://eprint.iacr.org/2005/181.pdf
https://ssrn.com/abstract=2784659
https://ssrn.com/abstract=2784659
http://arxiv.org/abs/1603.02478
http://dx.doi.org/10.2139/ssrn.2560028
http://www.as.huji.ac.il/sites/default/files/DA%20Heuristic%20Auctions%20June-2014.pdf


A A note about worst-case complexity

As is typical in program verification, we distinguish between constructing a proof and checking
it. Constructing the proof is hard: we do not assume that a proof (or some representation, like
a certificate) can be found automatically in worst-case polynomial time, and we will even allow a
human to play a limited part in this process. However, checking the proof must be easy: agents
should be able to take the formal proof and check it in polynomial time.

While worst-case polynomial time for the entire process would be ideal, it is not very realistic as
we cannot expect an algorithm to prove the incentive properties automatically—the proof may be a
research contribution; deciding whether an incentive property holds at all may be an undecidable
problem. However, relaxing the running time condition when constructing the proof is well-motivated
in our application. Unlike the mechanism itself, the proof construction procedure will not be run
many times on inputs of unknown origin and varying size. Instead, for a particular mechanism, the
proof is constructed just once. In exchange for relaxing worst-case running time, we can verify rich
classes of mechanisms.

B Verifying the VCG Mechanism

The celebrated VCG mechanism is a foundational result in the mechanism design literature. It
calculates an outcome maximizing social welfare (i.e., the sum of all the agents’ valuations) and
payments ensuring that truthful bidding is incentive compatible. Let’s briefly review the definition.

Definition B.1 (Vickrey [23], Clarke [8], Groves [14]). Let O be a space of outcomes, and let
v : T ˆO Ñ R map agent types and outcomes to real values. Given a reported type profile t from n
agents, the VCG mechanism selects the social-welfare maximizing outcome:

o˚ :“ argmax
oPO

ÿ

iPrns

vpti, oq,

and computes payments

pj :“ max
oPO

ÿ

iPrnsztju

vpti, oq ´
ÿ

iPrnsztju

vpti, o
˚q.

That is, the payment for agent j is the difference between the welfare for the other agents without j
present, and the welfare for the other agents with j present.

As Vickrey, Clarke, and Groves showed, this mechanism is incentive compatible. Let’s consider
how to verify this fact in HOARe2. Like for RSM, we will start by coding the utility function
for a single bidder. We will call it VcgM to distinguish it from the more special case we need for
RSM; Figure 7 presents the full code. The parameters to VcgM are a list of valuation functions
(values) and a set of possible outcomes (range). We use two helper functions: sumFuns takes a
list of valuation functions and sums them to form the social welfare function, while findMax takes a
objective function and a set of outcomes, and returns the outcome maximizing the objective.

To encode the incentive property, we will consider two runs of VcgM. We allow any single agent
to deviate on the two runs. For the deviating agent, we will model her report in the first run will be
her“true” valuation. Then, we want to give VcgM the following annotation:

tvalues : O Ñ Ru Ñ trange : listOu Ñ tpout, paysq : O ˆ listR | out P range^ vcgTruthu.
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1 def VcgM(values, range) =
2 welfare = sumFuns(values);
3 outcome = findMax(welfare, range);
4
5 for i = 1 . . . n:
6 welfWithout = sumFuns(values´i);
7 outWithout = findMax(welfWithout, range);
8 prices[i] = welfWithout(outWithout) - welfWithout(outcome)
9 end

10
11 (outcome, prices)

Figure 7: Encoding the VCG mechanism in HOARe2

The predicate vcgTruth captures truthfulness, like the assertion in § 3:

vcgTruth :“ @j P rms . pvalues´j,1 “ values´j,2 q ùñ

values[j]1(out1[j]) ´ pays1[j] ě values[j]1(out2[j]) ´ pays2[j].

With appropriate annotations on findMax, sumFuns, and the “all-but-j ” operation p´q´j , HOARe2 verifies
VCG automatically.

C A primer on program verification

Program correctness and program verification have a venerable history. In a visionary article, Turing
[22] presents a rigorous proof of correctness for a computer routine; although very short, this note
prefigures the current trends in deductive program verification and introduces many fundamental
ideas and concepts that still remain at the core of program verification today. In particular, Turing
makes a clear distinction between the programmer and the verifier, and argues that in order to
alleviate the task of the verifier, the programmer should annotate his code with assertions, i.e.
predicates on program states. Moreover, Turing argues that it should be possible to verify assertions
locally and that the correctness of the routine should be expressed by the initial and final assertions,
i.e. the assertions attached to the entry and exit points, which respectively capture hypotheses on
the program inputs and claims about the program outputs.

Leveraging contemporary developments in programming language theory, the seminal works of
Floyd [12] and Hoare [15] formalize verification methods that adhere to the program proposed by
Turing. Both formalisms share similar principles and make a central use of invariants for reasoning
about programs with complex control-flow; for instance, both methods use loop invariants—assertions
that hold when the program enters a loop and remain valid during loop iterations. However, the
methods differ in the specifics of proving program correctness. On the one hand, Hoare logic provides
a proof system—a set of axioms and rules for combining axioms—that can be used to build valid
formal proofs that establish program correctness. On the other hand, Floyd calculus computes—from
an annotated program—a set of verification conditions: formulas of some formal language such as
first-order logic, whose validity implies correctness of the program. Despite their differences, the
two approaches can be proved equivalent, and assuming that the underlying language of assertions
is sufficiently expressive, are relatively complete [10]; relative completeness reduces the validity of
program specifications to the validity of assertions.

Both Floyd [12] and Hoare [15] are designed to reason about properties, i.e. sets of program
executions. They cannot reason about the larger class of hyperproperties [9], which characterize sets
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of sets of program executions. Continuity (small variations on the input induce small variations on
the output), and truthfulness (pay-off is maximized when agents play their true value) are prominent
binary instances of hyperproperties, also called relational properties. Reasoning about relational
properties is challenging and the subject of active research in programming languages. One way
for reasoning about such properties is by using relational variants of Floyd [12] and Hoare [15].
These variants [6] reason about two programs (or two copies of the same program) and use so-called
relational assertions, assertions which describe pairs of states.

Another challenge in program verification is to deal with probabilistic programs. Starting from
the seminal work of Kozen [16], numerous logics have been proposed to reason about properties
of probabilistic programs, including [18, 7]. Recently, Barthe, Grégoire, and Zanella-Béguelin [3]
propose a relational logic for reasoning about probabilistic programs. Barthe et al. [5] extend and
generalize the relational logic to the setting of a higher-order programming language.

In recent years, the theoretical advances in program verification have been matched by the
emergence of computer-aided verification tools that have successfully validated large software
developments. Most tools implement algorithms for computing verification conditions; the algorithms
are similar in spirit to Floyd [12], although they typically use optimizations [11]. Moreover, most
systems use fully automated tools to check that verification conditions are valid. However, there
is a growing trend to complement this process with an interactive phase, where the programmer
interactively builds a proof of difficult verification conditions that cannot be proved automatically.
Contrary to automated tools, which try to find a proof of validity, interactive tools try to check that
the proof of validity built interactively by the programmer is indeed a valid proof. This interactive
phase is often required for proving rich properties of complex programs. It is also often helpful for
proving relational properties of probabilistic programs [4].

So far, our account of formal verification has focused on so-called deductive methods: methods
where the verification corresponds to build formal proofs that can be constructed using a finite set of
rules starting from a given set of axioms. However, there are many alternative methods for proving
program correctness. In particular, algorithmic methods, such as model-checking, have been highly
successful for analyzing properties of large systems. Algorithmic methods are fundamentally limited
by the state explosion problem, since the methods become intractable when the state space becomes
too large. Modern tools based on algorithmic verification exploit a number of insights for alleviating
the state explosion problem, including symbolic representations of the state space, partial order
reduction techniques, and abstraction/refinement techniques.

D Related Work in Computer-aided Program Verification

There is a small amount of work in the programming languages and computer-aided program
verification literature on verification of truthfulness in mechanism design. Lapets, Levin, and Parkes
[17] give an interesting approach, by presenting a programming language for automatically verifying
simple auction mechanisms. A key component of the language is a type analysis to determine if
an algorithm is monotone; if bidders have a single real number as their value (single-parameter
domains), then truthfulness is equivalent to a monotonicity property (e.g., see Mu’alem and Nisan
[19]). Their language can be extended by means of user-defined primitives that preserve monotonicity.
The paper shows the use of the language for verifying two simple auction examples, but it is unclear
how this approach scales to larger auctions, and does not extend beyond single parameter domains.
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Wooldridge, Agotnes, Dunne, and van der Hoek [24] promote the use of automatic verification
techniques where mechanism design properties are described by means of specification logics (like
Alternating Temporal Logic [1]), and where the verification is performed in an automatic way by
using the model checking technique. Similarly, Tadjouddine and Guerin [20] propose a similar
approach where first order logic is used as a specification logic. This approach works well for simple
auctions with few numbers of bidders but suffers from a state explosion problem when the auctions
are complex or the number of bidders is large. This situation can be alleviated by combining different
engineering techniques [21], but it is unclear if this approach can be scaled to handle complex
auctions with a large number of bidders. Moreover, these automatic approaches do not work in
setting of incomplete information.

An alternative approach based on interactive theorem proving has been explored by Bai, Tad-
jouddine, Payne, and Guan [2]. Interactive theorem provers allows specifying and formally reasoning
about arbitrary auctions and different truthfulness properties. More generally, they have been used
to formalize large theorems in mathematics [13]. Unfortunately, verifying the required properties
can require advanced proof engineering skills, even for very simple auctions; Bai et al. [2] consider
the English and Vickrey auctions.
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